Classification of Potato Varieties Using Isoelectrophoretic Focusing Patterns, Neural Nets, and Statistical Methods

Automatic potato variety classification by a multivariate statistical classification method and a combined neural network model is described. Both classification methods were based on digitized isoelectrophoretic patterns of the soluble tuber proteins. The statistical classification algorithm was ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 1997-01, Vol.45 (1), p.158-161
Hauptverfasser: Jensen, Kirsten, Tygesen, Thomas K, Keşmir, Can, Skovgaard, Ib M, Søndergaard, Ib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 1
container_start_page 158
container_title Journal of agricultural and food chemistry
container_volume 45
creator Jensen, Kirsten
Tygesen, Thomas K
Keşmir, Can
Skovgaard, Ib M
Søndergaard, Ib
description Automatic potato variety classification by a multivariate statistical classification method and a combined neural network model is described. Both classification methods were based on digitized isoelectrophoretic patterns of the soluble tuber proteins. The statistical classification algorithm was based on a model that allows for individual stretching as well as displacement along the pH axis. The neural network architecture consisted of two layers:  a self-organizing feature map and a feed-forward classifier. Twelve potato varieties were classified. The mean value of the recognition rates were 84.5 and 87.5% obtained by the statistical classification method and the neural network model, respectively. The results confirm the theory stated in earlier classification studies, that the automatic classification systems are well-established, independent of the origin of the samples, and unaffected by pattern deformations and variations in the background level of the electrophoretic gels. Keywords: Potato; isoelectric focusing; image processing; classification; neural networks
doi_str_mv 10.1021/jf9602737
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jf9602737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_MX954G5G_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-7a3fb55e65faf79335e7f3f35f1cc6089ec232628f44f3af7eb312269f8cc3333</originalsourceid><addsrcrecordid>eNptkM1OGzEUhS3USqTQRR8AaRawqMRQ_4w9M0sUlRQptJFCqu6si7HBIYwjX0eCt-fSqbKqN1f2-Xx8fBj7IviF4FJ8W4fecNmq9oBNhJa81kJ0H9iEk1h32ohD9glxzTnvdMsnDKcbQIwhOigxDVUK1SIVKKn6DTn6Ej1WK4zDQ3WNyW-8KzltH1MmxVVXye3-agsoxecBz6uffpdhQ6PQBob7aklmEYmm0xtfHtM9HrOPATboP_-bR2x19f12-qOe_5pdTy_nNajGlLoFFe609kYHCG2vlPZtUEHpIJwzvOu9k0oa2YWmCYoQf6eElKYPnXOK1hH7Ovq6nBCzD3ab4zPkVyu4fW_L7tsi9nRkt4AUNWQYXMT9BambVnJDWD1i9CX_spchP1lDNtreLpb25k-vm5me2TnxJyMfIFl4yGS5Woq-bznllu_Pno06OLTrtMsDFfKfeG_aiY6a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classification of Potato Varieties Using Isoelectrophoretic Focusing Patterns, Neural Nets, and Statistical Methods</title><source>American Chemical Society Journals</source><creator>Jensen, Kirsten ; Tygesen, Thomas K ; Keşmir, Can ; Skovgaard, Ib M ; Søndergaard, Ib</creator><creatorcontrib>Jensen, Kirsten ; Tygesen, Thomas K ; Keşmir, Can ; Skovgaard, Ib M ; Søndergaard, Ib</creatorcontrib><description>Automatic potato variety classification by a multivariate statistical classification method and a combined neural network model is described. Both classification methods were based on digitized isoelectrophoretic patterns of the soluble tuber proteins. The statistical classification algorithm was based on a model that allows for individual stretching as well as displacement along the pH axis. The neural network architecture consisted of two layers:  a self-organizing feature map and a feed-forward classifier. Twelve potato varieties were classified. The mean value of the recognition rates were 84.5 and 87.5% obtained by the statistical classification method and the neural network model, respectively. The results confirm the theory stated in earlier classification studies, that the automatic classification systems are well-established, independent of the origin of the samples, and unaffected by pattern deformations and variations in the background level of the electrophoretic gels. Keywords: Potato; isoelectric focusing; image processing; classification; neural networks</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf9602737</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Agronomy. Soil science and plant productions ; Biological and medical sciences ; CLASIFICACION ; CLASSIFICATION ; COMPARISONS ; COMPUTER SOFTWARE ; CULTIVARS ; Economic plant physiology ; ELECTROFORESIS ; ELECTROPHORESE ; ELECTROPHORESIS ; Food industries ; Fruit and vegetable industries ; Fundamental and applied biological sciences. Psychology ; Generalities and techniques ; ISOELECTRIC FOCUSING ; ISOELECTROFOCALISATION ; ISOELECTROFOQUE ; LOGICIEL ; METHODE STATISTIQUE ; METODOS ESTADISTICOS ; MULTIVARIATE ANALYSIS ; NEURAL NETWORKS ; PLANT PROTEINS ; PROGRAMAS DE ORDENADOR ; PROTEINAS ; PROTEINE ; PROTEINS ; SOLANUM TUBEROSUM ; STATISTICAL METHODS ; TUBERCULE ; TUBERCULO ; TUBERS ; VARIEDADES ; VARIETE ; VARIETIES</subject><ispartof>Journal of agricultural and food chemistry, 1997-01, Vol.45 (1), p.158-161</ispartof><rights>Copyright © 1997 American Chemical Society</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-7a3fb55e65faf79335e7f3f35f1cc6089ec232628f44f3af7eb312269f8cc3333</citedby><cites>FETCH-LOGICAL-a346t-7a3fb55e65faf79335e7f3f35f1cc6089ec232628f44f3af7eb312269f8cc3333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jf9602737$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jf9602737$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2547206$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, Kirsten</creatorcontrib><creatorcontrib>Tygesen, Thomas K</creatorcontrib><creatorcontrib>Keşmir, Can</creatorcontrib><creatorcontrib>Skovgaard, Ib M</creatorcontrib><creatorcontrib>Søndergaard, Ib</creatorcontrib><title>Classification of Potato Varieties Using Isoelectrophoretic Focusing Patterns, Neural Nets, and Statistical Methods</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Automatic potato variety classification by a multivariate statistical classification method and a combined neural network model is described. Both classification methods were based on digitized isoelectrophoretic patterns of the soluble tuber proteins. The statistical classification algorithm was based on a model that allows for individual stretching as well as displacement along the pH axis. The neural network architecture consisted of two layers:  a self-organizing feature map and a feed-forward classifier. Twelve potato varieties were classified. The mean value of the recognition rates were 84.5 and 87.5% obtained by the statistical classification method and the neural network model, respectively. The results confirm the theory stated in earlier classification studies, that the automatic classification systems are well-established, independent of the origin of the samples, and unaffected by pattern deformations and variations in the background level of the electrophoretic gels. Keywords: Potato; isoelectric focusing; image processing; classification; neural networks</description><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>CLASIFICACION</subject><subject>CLASSIFICATION</subject><subject>COMPARISONS</subject><subject>COMPUTER SOFTWARE</subject><subject>CULTIVARS</subject><subject>Economic plant physiology</subject><subject>ELECTROFORESIS</subject><subject>ELECTROPHORESE</subject><subject>ELECTROPHORESIS</subject><subject>Food industries</subject><subject>Fruit and vegetable industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities and techniques</subject><subject>ISOELECTRIC FOCUSING</subject><subject>ISOELECTROFOCALISATION</subject><subject>ISOELECTROFOQUE</subject><subject>LOGICIEL</subject><subject>METHODE STATISTIQUE</subject><subject>METODOS ESTADISTICOS</subject><subject>MULTIVARIATE ANALYSIS</subject><subject>NEURAL NETWORKS</subject><subject>PLANT PROTEINS</subject><subject>PROGRAMAS DE ORDENADOR</subject><subject>PROTEINAS</subject><subject>PROTEINE</subject><subject>PROTEINS</subject><subject>SOLANUM TUBEROSUM</subject><subject>STATISTICAL METHODS</subject><subject>TUBERCULE</subject><subject>TUBERCULO</subject><subject>TUBERS</subject><subject>VARIEDADES</subject><subject>VARIETE</subject><subject>VARIETIES</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNptkM1OGzEUhS3USqTQRR8AaRawqMRQ_4w9M0sUlRQptJFCqu6si7HBIYwjX0eCt-fSqbKqN1f2-Xx8fBj7IviF4FJ8W4fecNmq9oBNhJa81kJ0H9iEk1h32ohD9glxzTnvdMsnDKcbQIwhOigxDVUK1SIVKKn6DTn6Ej1WK4zDQ3WNyW-8KzltH1MmxVVXye3-agsoxecBz6uffpdhQ6PQBob7aklmEYmm0xtfHtM9HrOPATboP_-bR2x19f12-qOe_5pdTy_nNajGlLoFFe609kYHCG2vlPZtUEHpIJwzvOu9k0oa2YWmCYoQf6eElKYPnXOK1hH7Ovq6nBCzD3ab4zPkVyu4fW_L7tsi9nRkt4AUNWQYXMT9BambVnJDWD1i9CX_spchP1lDNtreLpb25k-vm5me2TnxJyMfIFl4yGS5Woq-bznllu_Pno06OLTrtMsDFfKfeG_aiY6a</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Jensen, Kirsten</creator><creator>Tygesen, Thomas K</creator><creator>Keşmir, Can</creator><creator>Skovgaard, Ib M</creator><creator>Søndergaard, Ib</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970101</creationdate><title>Classification of Potato Varieties Using Isoelectrophoretic Focusing Patterns, Neural Nets, and Statistical Methods</title><author>Jensen, Kirsten ; Tygesen, Thomas K ; Keşmir, Can ; Skovgaard, Ib M ; Søndergaard, Ib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-7a3fb55e65faf79335e7f3f35f1cc6089ec232628f44f3af7eb312269f8cc3333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>CLASIFICACION</topic><topic>CLASSIFICATION</topic><topic>COMPARISONS</topic><topic>COMPUTER SOFTWARE</topic><topic>CULTIVARS</topic><topic>Economic plant physiology</topic><topic>ELECTROFORESIS</topic><topic>ELECTROPHORESE</topic><topic>ELECTROPHORESIS</topic><topic>Food industries</topic><topic>Fruit and vegetable industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities and techniques</topic><topic>ISOELECTRIC FOCUSING</topic><topic>ISOELECTROFOCALISATION</topic><topic>ISOELECTROFOQUE</topic><topic>LOGICIEL</topic><topic>METHODE STATISTIQUE</topic><topic>METODOS ESTADISTICOS</topic><topic>MULTIVARIATE ANALYSIS</topic><topic>NEURAL NETWORKS</topic><topic>PLANT PROTEINS</topic><topic>PROGRAMAS DE ORDENADOR</topic><topic>PROTEINAS</topic><topic>PROTEINE</topic><topic>PROTEINS</topic><topic>SOLANUM TUBEROSUM</topic><topic>STATISTICAL METHODS</topic><topic>TUBERCULE</topic><topic>TUBERCULO</topic><topic>TUBERS</topic><topic>VARIEDADES</topic><topic>VARIETE</topic><topic>VARIETIES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Kirsten</creatorcontrib><creatorcontrib>Tygesen, Thomas K</creatorcontrib><creatorcontrib>Keşmir, Can</creatorcontrib><creatorcontrib>Skovgaard, Ib M</creatorcontrib><creatorcontrib>Søndergaard, Ib</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Kirsten</au><au>Tygesen, Thomas K</au><au>Keşmir, Can</au><au>Skovgaard, Ib M</au><au>Søndergaard, Ib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Potato Varieties Using Isoelectrophoretic Focusing Patterns, Neural Nets, and Statistical Methods</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>1997-01-01</date><risdate>1997</risdate><volume>45</volume><issue>1</issue><spage>158</spage><epage>161</epage><pages>158-161</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Automatic potato variety classification by a multivariate statistical classification method and a combined neural network model is described. Both classification methods were based on digitized isoelectrophoretic patterns of the soluble tuber proteins. The statistical classification algorithm was based on a model that allows for individual stretching as well as displacement along the pH axis. The neural network architecture consisted of two layers:  a self-organizing feature map and a feed-forward classifier. Twelve potato varieties were classified. The mean value of the recognition rates were 84.5 and 87.5% obtained by the statistical classification method and the neural network model, respectively. The results confirm the theory stated in earlier classification studies, that the automatic classification systems are well-established, independent of the origin of the samples, and unaffected by pattern deformations and variations in the background level of the electrophoretic gels. Keywords: Potato; isoelectric focusing; image processing; classification; neural networks</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/jf9602737</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 1997-01, Vol.45 (1), p.158-161
issn 0021-8561
1520-5118
language eng
recordid cdi_crossref_primary_10_1021_jf9602737
source American Chemical Society Journals
subjects Agronomy. Soil science and plant productions
Biological and medical sciences
CLASIFICACION
CLASSIFICATION
COMPARISONS
COMPUTER SOFTWARE
CULTIVARS
Economic plant physiology
ELECTROFORESIS
ELECTROPHORESE
ELECTROPHORESIS
Food industries
Fruit and vegetable industries
Fundamental and applied biological sciences. Psychology
Generalities and techniques
ISOELECTRIC FOCUSING
ISOELECTROFOCALISATION
ISOELECTROFOQUE
LOGICIEL
METHODE STATISTIQUE
METODOS ESTADISTICOS
MULTIVARIATE ANALYSIS
NEURAL NETWORKS
PLANT PROTEINS
PROGRAMAS DE ORDENADOR
PROTEINAS
PROTEINE
PROTEINS
SOLANUM TUBEROSUM
STATISTICAL METHODS
TUBERCULE
TUBERCULO
TUBERS
VARIEDADES
VARIETE
VARIETIES
title Classification of Potato Varieties Using Isoelectrophoretic Focusing Patterns, Neural Nets, and Statistical Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Potato%20Varieties%20Using%20Isoelectrophoretic%20Focusing%20Patterns,%20Neural%20Nets,%20and%20Statistical%20Methods&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Jensen,%20Kirsten&rft.date=1997-01-01&rft.volume=45&rft.issue=1&rft.spage=158&rft.epage=161&rft.pages=158-161&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf9602737&rft_dat=%3Cistex_cross%3Eark_67375_TPS_MX954G5G_L%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true