Elucidating the Transformation Pattern of the Cereal Allelochemical 6-Methoxy-2-benzoxazolinone (MBOA) and the Trideuteriomethoxy Analogue [D3]-MBOA in Soil

To deduce the structure of the large array of compounds arising from the transformation pathway of 6-methoxybenzoxazolin-2-one (MBOA), the combination of isotopic substitution and liquid chromatography analysis with mass spectrometry detection was used as a powerful tool. MBOA is formed in soil when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2006-02, Vol.54 (4), p.1075-1085
Hauptverfasser: Etzerodt, Thomas, Nielsen, Susan T, Mortensen, Anne G, Christophersen, Carsten, Fomsgaard, Inge S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To deduce the structure of the large array of compounds arising from the transformation pathway of 6-methoxybenzoxazolin-2-one (MBOA), the combination of isotopic substitution and liquid chromatography analysis with mass spectrometry detection was used as a powerful tool. MBOA is formed in soil when the cereal allelochemical 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) is exuded from plant material to soil. Degradation experiments were performed in concentrations of 400 μg of benzoxazolinone/g of soil for MBOA and its isotopomer 6-trideuteriomethoxybenzoxazolin-2-one ([D3]-MBOA). Previously identified metabolites 2-amino-7-methoxyphenoxazin-3-one (AMPO) and 2-acetylamino-7-methoxyphenoxazin-3-one (AAMPO) were detected. Furthermore, several novel compounds were detected and provisionally characterized. The environmental impact of these compounds and their long-range effects are yet to be discovered. This is imperative due to the enhanced interest in exploiting the allelopathic properties of cereals as a means of reducing the use of synthetic pesticides. Keywords: Isotope labeling; transformation; identification; LC-MS; 6-trideuteriomethoxybenzoxazolin-2-one; allelochemicals; soil; degradation; allelopathy
ISSN:0021-8561
1520-5118
DOI:10.1021/jf0509052