Density and Viscosity of Binary Liquid Mixtures of Ethanol + 1‑Hexanol and Ethanol + 1‑Heptanol from (293.15 to 328.15) K at 0.1 MPa

This paper presents experimental viscosity and density measurements for two binary mixtures of ethanol with 1-hexanol and 1-heptanol that cover the complete composition range from (293.15 to 328.15) K at 0.1 MPa. A vibrating tube densimeter provides density measurements, whereas viscosities come fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical and engineering data 2015-07, Vol.60 (7), p.1945-1955
Hauptverfasser: Cano-Gómez, José J, Iglesias-Silva, Gustavo A, Castrejón-González, Edgar O, Ramos-Estrada, Mariana, Hall, Kenneth R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1955
container_issue 7
container_start_page 1945
container_title Journal of chemical and engineering data
container_volume 60
creator Cano-Gómez, José J
Iglesias-Silva, Gustavo A
Castrejón-González, Edgar O
Ramos-Estrada, Mariana
Hall, Kenneth R
description This paper presents experimental viscosity and density measurements for two binary mixtures of ethanol with 1-hexanol and 1-heptanol that cover the complete composition range from (293.15 to 328.15) K at 0.1 MPa. A vibrating tube densimeter provides density measurements, whereas viscosities come from a pellet microviscometer. The excess molar volumes calculated from the experimental data have positive deviations from ideality over the temperature range. Calculated viscosity deviations from the experimental data show negative deviations from a mole fraction weighted average of the pure component viscosities over the temperature range. A Redlich–Kister type equation correlates the data satisfactorily. We have correlated the three-body McAllister to the experimental kinematic viscosity. Comparison of the experimental viscosity data to predictions from a generalized, three-body McAllister and a generalized corresponding states principle (GCSP) equation shows that the generalized McAllister equation is superior predicting the kinematic viscosity within an average absolute percentage deviation of 1.24%. Finally, molecular dynamics was performed to compare density and viscosity results with those obtained experimentally. Results for density agree with the experimental measurements, whereas viscosity calculations are beyond the experimental error.
doi_str_mv 10.1021/je501133u
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_je501133u</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a720904310</sourcerecordid><originalsourceid>FETCH-LOGICAL-a296t-e2e5b8cc19afe4888120980fb150659e4e43a09000b177f5ed5c2a19235dc9d03</originalsourceid><addsrcrecordid>eNptUMFOAjEUbIwmInrwD3oxkZjFvnYL7VERxQjRg3rdlG4bl8AW224CN49e_UW_xILGg_H03mQmk5lB6BhIFwiF85nhBICxZge1gFOScWD5LmqRRGaS98Q-OghhRgjJ-xRa6P3K1KGKa6zqEj9XQbstchZfVrXyazyuXpuqxJNqFRtvwoYZxhdVuzk-w_D59jEyqy3aGPxllnELrXcLfEol6wLH0WFGRfo6-A6riFNwPHlQh2jPqnkwRz-3jZ6uh4-DUTa-v7kdXIwzRWUvZoYaPhVag1TW5EIIoEQKYqfASY9Lk5ucKSJTvyn0-5abkmuqQFLGSy1Lwtqo8-2rvQvBG1ssfbVITQsgxWbC4nfCpD351iodiplrfJ2S_aP7AsOQbVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Density and Viscosity of Binary Liquid Mixtures of Ethanol + 1‑Hexanol and Ethanol + 1‑Heptanol from (293.15 to 328.15) K at 0.1 MPa</title><source>American Chemical Society Journals</source><creator>Cano-Gómez, José J ; Iglesias-Silva, Gustavo A ; Castrejón-González, Edgar O ; Ramos-Estrada, Mariana ; Hall, Kenneth R</creator><creatorcontrib>Cano-Gómez, José J ; Iglesias-Silva, Gustavo A ; Castrejón-González, Edgar O ; Ramos-Estrada, Mariana ; Hall, Kenneth R</creatorcontrib><description>This paper presents experimental viscosity and density measurements for two binary mixtures of ethanol with 1-hexanol and 1-heptanol that cover the complete composition range from (293.15 to 328.15) K at 0.1 MPa. A vibrating tube densimeter provides density measurements, whereas viscosities come from a pellet microviscometer. The excess molar volumes calculated from the experimental data have positive deviations from ideality over the temperature range. Calculated viscosity deviations from the experimental data show negative deviations from a mole fraction weighted average of the pure component viscosities over the temperature range. A Redlich–Kister type equation correlates the data satisfactorily. We have correlated the three-body McAllister to the experimental kinematic viscosity. Comparison of the experimental viscosity data to predictions from a generalized, three-body McAllister and a generalized corresponding states principle (GCSP) equation shows that the generalized McAllister equation is superior predicting the kinematic viscosity within an average absolute percentage deviation of 1.24%. Finally, molecular dynamics was performed to compare density and viscosity results with those obtained experimentally. Results for density agree with the experimental measurements, whereas viscosity calculations are beyond the experimental error.</description><identifier>ISSN: 0021-9568</identifier><identifier>EISSN: 1520-5134</identifier><identifier>DOI: 10.1021/je501133u</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of chemical and engineering data, 2015-07, Vol.60 (7), p.1945-1955</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a296t-e2e5b8cc19afe4888120980fb150659e4e43a09000b177f5ed5c2a19235dc9d03</citedby><cites>FETCH-LOGICAL-a296t-e2e5b8cc19afe4888120980fb150659e4e43a09000b177f5ed5c2a19235dc9d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/je501133u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/je501133u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Cano-Gómez, José J</creatorcontrib><creatorcontrib>Iglesias-Silva, Gustavo A</creatorcontrib><creatorcontrib>Castrejón-González, Edgar O</creatorcontrib><creatorcontrib>Ramos-Estrada, Mariana</creatorcontrib><creatorcontrib>Hall, Kenneth R</creatorcontrib><title>Density and Viscosity of Binary Liquid Mixtures of Ethanol + 1‑Hexanol and Ethanol + 1‑Heptanol from (293.15 to 328.15) K at 0.1 MPa</title><title>Journal of chemical and engineering data</title><addtitle>J. Chem. Eng. Data</addtitle><description>This paper presents experimental viscosity and density measurements for two binary mixtures of ethanol with 1-hexanol and 1-heptanol that cover the complete composition range from (293.15 to 328.15) K at 0.1 MPa. A vibrating tube densimeter provides density measurements, whereas viscosities come from a pellet microviscometer. The excess molar volumes calculated from the experimental data have positive deviations from ideality over the temperature range. Calculated viscosity deviations from the experimental data show negative deviations from a mole fraction weighted average of the pure component viscosities over the temperature range. A Redlich–Kister type equation correlates the data satisfactorily. We have correlated the three-body McAllister to the experimental kinematic viscosity. Comparison of the experimental viscosity data to predictions from a generalized, three-body McAllister and a generalized corresponding states principle (GCSP) equation shows that the generalized McAllister equation is superior predicting the kinematic viscosity within an average absolute percentage deviation of 1.24%. Finally, molecular dynamics was performed to compare density and viscosity results with those obtained experimentally. Results for density agree with the experimental measurements, whereas viscosity calculations are beyond the experimental error.</description><issn>0021-9568</issn><issn>1520-5134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptUMFOAjEUbIwmInrwD3oxkZjFvnYL7VERxQjRg3rdlG4bl8AW224CN49e_UW_xILGg_H03mQmk5lB6BhIFwiF85nhBICxZge1gFOScWD5LmqRRGaS98Q-OghhRgjJ-xRa6P3K1KGKa6zqEj9XQbstchZfVrXyazyuXpuqxJNqFRtvwoYZxhdVuzk-w_D59jEyqy3aGPxllnELrXcLfEol6wLH0WFGRfo6-A6riFNwPHlQh2jPqnkwRz-3jZ6uh4-DUTa-v7kdXIwzRWUvZoYaPhVag1TW5EIIoEQKYqfASY9Lk5ucKSJTvyn0-5abkmuqQFLGSy1Lwtqo8-2rvQvBG1ssfbVITQsgxWbC4nfCpD351iodiplrfJ2S_aP7AsOQbVc</recordid><startdate>20150709</startdate><enddate>20150709</enddate><creator>Cano-Gómez, José J</creator><creator>Iglesias-Silva, Gustavo A</creator><creator>Castrejón-González, Edgar O</creator><creator>Ramos-Estrada, Mariana</creator><creator>Hall, Kenneth R</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150709</creationdate><title>Density and Viscosity of Binary Liquid Mixtures of Ethanol + 1‑Hexanol and Ethanol + 1‑Heptanol from (293.15 to 328.15) K at 0.1 MPa</title><author>Cano-Gómez, José J ; Iglesias-Silva, Gustavo A ; Castrejón-González, Edgar O ; Ramos-Estrada, Mariana ; Hall, Kenneth R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a296t-e2e5b8cc19afe4888120980fb150659e4e43a09000b177f5ed5c2a19235dc9d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cano-Gómez, José J</creatorcontrib><creatorcontrib>Iglesias-Silva, Gustavo A</creatorcontrib><creatorcontrib>Castrejón-González, Edgar O</creatorcontrib><creatorcontrib>Ramos-Estrada, Mariana</creatorcontrib><creatorcontrib>Hall, Kenneth R</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of chemical and engineering data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cano-Gómez, José J</au><au>Iglesias-Silva, Gustavo A</au><au>Castrejón-González, Edgar O</au><au>Ramos-Estrada, Mariana</au><au>Hall, Kenneth R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density and Viscosity of Binary Liquid Mixtures of Ethanol + 1‑Hexanol and Ethanol + 1‑Heptanol from (293.15 to 328.15) K at 0.1 MPa</atitle><jtitle>Journal of chemical and engineering data</jtitle><addtitle>J. Chem. Eng. Data</addtitle><date>2015-07-09</date><risdate>2015</risdate><volume>60</volume><issue>7</issue><spage>1945</spage><epage>1955</epage><pages>1945-1955</pages><issn>0021-9568</issn><eissn>1520-5134</eissn><abstract>This paper presents experimental viscosity and density measurements for two binary mixtures of ethanol with 1-hexanol and 1-heptanol that cover the complete composition range from (293.15 to 328.15) K at 0.1 MPa. A vibrating tube densimeter provides density measurements, whereas viscosities come from a pellet microviscometer. The excess molar volumes calculated from the experimental data have positive deviations from ideality over the temperature range. Calculated viscosity deviations from the experimental data show negative deviations from a mole fraction weighted average of the pure component viscosities over the temperature range. A Redlich–Kister type equation correlates the data satisfactorily. We have correlated the three-body McAllister to the experimental kinematic viscosity. Comparison of the experimental viscosity data to predictions from a generalized, three-body McAllister and a generalized corresponding states principle (GCSP) equation shows that the generalized McAllister equation is superior predicting the kinematic viscosity within an average absolute percentage deviation of 1.24%. Finally, molecular dynamics was performed to compare density and viscosity results with those obtained experimentally. Results for density agree with the experimental measurements, whereas viscosity calculations are beyond the experimental error.</abstract><pub>American Chemical Society</pub><doi>10.1021/je501133u</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9568
ispartof Journal of chemical and engineering data, 2015-07, Vol.60 (7), p.1945-1955
issn 0021-9568
1520-5134
language eng
recordid cdi_crossref_primary_10_1021_je501133u
source American Chemical Society Journals
title Density and Viscosity of Binary Liquid Mixtures of Ethanol + 1‑Hexanol and Ethanol + 1‑Heptanol from (293.15 to 328.15) K at 0.1 MPa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20and%20Viscosity%20of%20Binary%20Liquid%20Mixtures%20of%20Ethanol%20+%201%E2%80%91Hexanol%20and%20Ethanol%20+%201%E2%80%91Heptanol%20from%20(293.15%20to%20328.15)%20K%20at%200.1%20MPa&rft.jtitle=Journal%20of%20chemical%20and%20engineering%20data&rft.au=Cano-Go%CC%81mez,%20Jose%CC%81%20J&rft.date=2015-07-09&rft.volume=60&rft.issue=7&rft.spage=1945&rft.epage=1955&rft.pages=1945-1955&rft.issn=0021-9568&rft.eissn=1520-5134&rft_id=info:doi/10.1021/je501133u&rft_dat=%3Cacs_cross%3Ea720904310%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true