Group Contribution Model for the Prediction of Refractive Indices of Organic Compounds

The determination of a wide range of optical parameters for the evaluation of thermodynamic properties and process variables is required in chemical thermodynamics and process engineering. Thus, in this study, the prediction of the refractive indices of pure chemical compounds as a potential thermop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical and engineering data 2014-06, Vol.59 (6), p.1930-1943
Hauptverfasser: Gharagheizi, Farhad, Ilani-Kashkouli, Poorandokht, Kamari, Arash, Mohammadi, Amir H, Ramjugernath, Deresh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1943
container_issue 6
container_start_page 1930
container_title Journal of chemical and engineering data
container_volume 59
creator Gharagheizi, Farhad
Ilani-Kashkouli, Poorandokht
Kamari, Arash
Mohammadi, Amir H
Ramjugernath, Deresh
description The determination of a wide range of optical parameters for the evaluation of thermodynamic properties and process variables is required in chemical thermodynamics and process engineering. Thus, in this study, the prediction of the refractive indices of pure chemical compounds as a potential thermophysical property is pursued by a reliable model. An accurate group contribution (GC) method is presented for the estimation of the refractive indices of pure compounds. The model was developed by use of a very large data set of 11918 pure components, most of which are organic compounds. Approximately 80 % of the data set (9536 data points) was used to develop the model, and the remaining 20 % (2382 data points) was implemented to evaluate the predictive capability of the proposed model. The method uses a total of 80 substructures or structural functional groups to estimate the refractive index. The model has an average absolute relative deviation with respect to the literature data of 0.83 %, with a squared correlation coefficient of 0.888. The model therefore performs very satisfactorily with regard to the prediction of refractive indices of pure compounds.
doi_str_mv 10.1021/je5000633
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_je5000633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a624711360</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-1e3cd802a2f9205f85dafbed9af0aa456d92952fb57d373cecadc51944db8dfb3</originalsourceid><addsrcrecordid>eNptkE9LxDAUxIMoWFcPfoNcPHio5k_TNkdZdF1YWRH1WtLkRVt2k5K0gt9-s6548vSYmR_DYxC6pOSGEkZvexCEkJLzI5RRwUguKC-OUUZSmEtR1qfoLMY-MUXFaIbeF8FPA557N4auncbOO_zkDWyw9QGPn4CfA5hO_wTe4hewQSX1BXjpkg9x767Dh3KdTjXbwU_OxHN0YtUmwsXvnaG3h_vX-WO-Wi-W87tVrnjJxpwC16YmTDErGRG2FkbZFoxUlihViNJIJgWzragMr7gGrYwWVBaFaWtjWz5D14deHXyMAWwzhG6rwndDSbMfpPkbJLFXB1bp2PR-Ci599g-3A8CwYBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Group Contribution Model for the Prediction of Refractive Indices of Organic Compounds</title><source>American Chemical Society Journals</source><creator>Gharagheizi, Farhad ; Ilani-Kashkouli, Poorandokht ; Kamari, Arash ; Mohammadi, Amir H ; Ramjugernath, Deresh</creator><creatorcontrib>Gharagheizi, Farhad ; Ilani-Kashkouli, Poorandokht ; Kamari, Arash ; Mohammadi, Amir H ; Ramjugernath, Deresh</creatorcontrib><description>The determination of a wide range of optical parameters for the evaluation of thermodynamic properties and process variables is required in chemical thermodynamics and process engineering. Thus, in this study, the prediction of the refractive indices of pure chemical compounds as a potential thermophysical property is pursued by a reliable model. An accurate group contribution (GC) method is presented for the estimation of the refractive indices of pure compounds. The model was developed by use of a very large data set of 11918 pure components, most of which are organic compounds. Approximately 80 % of the data set (9536 data points) was used to develop the model, and the remaining 20 % (2382 data points) was implemented to evaluate the predictive capability of the proposed model. The method uses a total of 80 substructures or structural functional groups to estimate the refractive index. The model has an average absolute relative deviation with respect to the literature data of 0.83 %, with a squared correlation coefficient of 0.888. The model therefore performs very satisfactorily with regard to the prediction of refractive indices of pure compounds.</description><identifier>ISSN: 0021-9568</identifier><identifier>EISSN: 1520-5134</identifier><identifier>DOI: 10.1021/je5000633</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of chemical and engineering data, 2014-06, Vol.59 (6), p.1930-1943</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-1e3cd802a2f9205f85dafbed9af0aa456d92952fb57d373cecadc51944db8dfb3</citedby><cites>FETCH-LOGICAL-a362t-1e3cd802a2f9205f85dafbed9af0aa456d92952fb57d373cecadc51944db8dfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/je5000633$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/je5000633$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Gharagheizi, Farhad</creatorcontrib><creatorcontrib>Ilani-Kashkouli, Poorandokht</creatorcontrib><creatorcontrib>Kamari, Arash</creatorcontrib><creatorcontrib>Mohammadi, Amir H</creatorcontrib><creatorcontrib>Ramjugernath, Deresh</creatorcontrib><title>Group Contribution Model for the Prediction of Refractive Indices of Organic Compounds</title><title>Journal of chemical and engineering data</title><addtitle>J. Chem. Eng. Data</addtitle><description>The determination of a wide range of optical parameters for the evaluation of thermodynamic properties and process variables is required in chemical thermodynamics and process engineering. Thus, in this study, the prediction of the refractive indices of pure chemical compounds as a potential thermophysical property is pursued by a reliable model. An accurate group contribution (GC) method is presented for the estimation of the refractive indices of pure compounds. The model was developed by use of a very large data set of 11918 pure components, most of which are organic compounds. Approximately 80 % of the data set (9536 data points) was used to develop the model, and the remaining 20 % (2382 data points) was implemented to evaluate the predictive capability of the proposed model. The method uses a total of 80 substructures or structural functional groups to estimate the refractive index. The model has an average absolute relative deviation with respect to the literature data of 0.83 %, with a squared correlation coefficient of 0.888. The model therefore performs very satisfactorily with regard to the prediction of refractive indices of pure compounds.</description><issn>0021-9568</issn><issn>1520-5134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkE9LxDAUxIMoWFcPfoNcPHio5k_TNkdZdF1YWRH1WtLkRVt2k5K0gt9-s6548vSYmR_DYxC6pOSGEkZvexCEkJLzI5RRwUguKC-OUUZSmEtR1qfoLMY-MUXFaIbeF8FPA557N4auncbOO_zkDWyw9QGPn4CfA5hO_wTe4hewQSX1BXjpkg9x767Dh3KdTjXbwU_OxHN0YtUmwsXvnaG3h_vX-WO-Wi-W87tVrnjJxpwC16YmTDErGRG2FkbZFoxUlihViNJIJgWzragMr7gGrYwWVBaFaWtjWz5D14deHXyMAWwzhG6rwndDSbMfpPkbJLFXB1bp2PR-Ci599g-3A8CwYBY</recordid><startdate>20140612</startdate><enddate>20140612</enddate><creator>Gharagheizi, Farhad</creator><creator>Ilani-Kashkouli, Poorandokht</creator><creator>Kamari, Arash</creator><creator>Mohammadi, Amir H</creator><creator>Ramjugernath, Deresh</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140612</creationdate><title>Group Contribution Model for the Prediction of Refractive Indices of Organic Compounds</title><author>Gharagheizi, Farhad ; Ilani-Kashkouli, Poorandokht ; Kamari, Arash ; Mohammadi, Amir H ; Ramjugernath, Deresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-1e3cd802a2f9205f85dafbed9af0aa456d92952fb57d373cecadc51944db8dfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gharagheizi, Farhad</creatorcontrib><creatorcontrib>Ilani-Kashkouli, Poorandokht</creatorcontrib><creatorcontrib>Kamari, Arash</creatorcontrib><creatorcontrib>Mohammadi, Amir H</creatorcontrib><creatorcontrib>Ramjugernath, Deresh</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of chemical and engineering data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gharagheizi, Farhad</au><au>Ilani-Kashkouli, Poorandokht</au><au>Kamari, Arash</au><au>Mohammadi, Amir H</au><au>Ramjugernath, Deresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group Contribution Model for the Prediction of Refractive Indices of Organic Compounds</atitle><jtitle>Journal of chemical and engineering data</jtitle><addtitle>J. Chem. Eng. Data</addtitle><date>2014-06-12</date><risdate>2014</risdate><volume>59</volume><issue>6</issue><spage>1930</spage><epage>1943</epage><pages>1930-1943</pages><issn>0021-9568</issn><eissn>1520-5134</eissn><abstract>The determination of a wide range of optical parameters for the evaluation of thermodynamic properties and process variables is required in chemical thermodynamics and process engineering. Thus, in this study, the prediction of the refractive indices of pure chemical compounds as a potential thermophysical property is pursued by a reliable model. An accurate group contribution (GC) method is presented for the estimation of the refractive indices of pure compounds. The model was developed by use of a very large data set of 11918 pure components, most of which are organic compounds. Approximately 80 % of the data set (9536 data points) was used to develop the model, and the remaining 20 % (2382 data points) was implemented to evaluate the predictive capability of the proposed model. The method uses a total of 80 substructures or structural functional groups to estimate the refractive index. The model has an average absolute relative deviation with respect to the literature data of 0.83 %, with a squared correlation coefficient of 0.888. The model therefore performs very satisfactorily with regard to the prediction of refractive indices of pure compounds.</abstract><pub>American Chemical Society</pub><doi>10.1021/je5000633</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9568
ispartof Journal of chemical and engineering data, 2014-06, Vol.59 (6), p.1930-1943
issn 0021-9568
1520-5134
language eng
recordid cdi_crossref_primary_10_1021_je5000633
source American Chemical Society Journals
title Group Contribution Model for the Prediction of Refractive Indices of Organic Compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20Contribution%20Model%20for%20the%20Prediction%20of%20Refractive%20Indices%20of%20Organic%20Compounds&rft.jtitle=Journal%20of%20chemical%20and%20engineering%20data&rft.au=Gharagheizi,%20Farhad&rft.date=2014-06-12&rft.volume=59&rft.issue=6&rft.spage=1930&rft.epage=1943&rft.pages=1930-1943&rft.issn=0021-9568&rft.eissn=1520-5134&rft_id=info:doi/10.1021/je5000633&rft_dat=%3Cacs_cross%3Ea624711360%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true