Model for Calculating the Viscosity of Aqueous Solutions

A new model for calculating the viscosity of aqueous solutions has been developed. Parameters for 74 solutes were established based on a critical review of the literature for solutions of one solute in water, with over 9000 points included. The average difference between the calculated and experimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical and engineering data 2007-03, Vol.52 (2), p.321-335
1. Verfasser: LALIBERTE, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 2
container_start_page 321
container_title Journal of chemical and engineering data
container_volume 52
creator LALIBERTE, Marc
description A new model for calculating the viscosity of aqueous solutions has been developed. Parameters for 74 solutes were established based on a critical review of the literature for solutions of one solute in water, with over 9000 points included. The average difference between the calculated and experimental viscosities is less than 0.1 %, and the standard deviation of this difference is 3.7 % of the average experimental viscosity. The model was validated by estimating published viscosity for systems of more than one solute in water. The average difference between experimental and calculated values for 1700 points is −2.7 %, and the standard deviation of this difference is 16 % of the average experimental viscosity. The median standard deviation of the difference between experimental and calculated values is 3.5 % of the experimental viscosity. The solutes studied are (NH4)2SO4, AlCl3, BaCl2, Ca(NO3)2, CaCl2, Cd(NO3)2, CdCl2, CdSO4, CoCl2, CoSO4, Cr2(SO4)3, CrCl3, Cu(NO3)2, CuCl2, CuSO4, Fe2(SO4)3, FeCl2, FeSO4, H2O2, H2SO4, H3PO4, HCH3CO2 (acetic acid), HCHO2 (formic acid), HCl, HCN, HNO3, K2CO3, K2Cr2O7, K2HPO4, K2SO4, K3PO4, KBr, KCH3CO2, KCHO2, KCl, KH2PO4, KI, KNO3, KOH, Li2SO4, LiCl, LiNO3, LiOH, Mg(NO3)2, MgCl2, MgSO4, MnCl2, MnSO4, Na2CO3, Na2HPO4, Na2S2O3, Na2SO3, Na2SO4, Na3PO4, NaBr, NaCH3CO2, NaCl, NaClO3, NaF, NaH2PO4, NaI, NaNO3, NaOH, NH3, NH4Cl, NH4NO3, NiCl2, NiSO4, Pb(NO3)2, Sr(NO3)2, SrCl2, sucrose, ZnCl2, and ZnSO4. Density data are also presented for these solutes and for NaHCO3.
doi_str_mv 10.1021/je0604075
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_je0604075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_RQ4N3KN5_M</sourcerecordid><originalsourceid>FETCH-LOGICAL-a430t-a4ed7ddf793988a22f8b958db4ed0b3948a16d456ccb1f566952d53e365829b23</originalsourceid><addsrcrecordid>eNptj0lPwzAQhS0EEqVw4B_4woFDwHucY1WxibYsLVwtxwukhLjYiUT_PamK6IXLjDTvzff0ADjF6AIjgi-XDgnEUM73wABzgjKOKdsHA9SLWcGFPARHKS0RQiwneADkNFhXQx8iHOvadLVuq-YNtu8OvlbJhFS1axg8HH11LnQJzkPdtVVo0jE48LpO7uR3D8HL9dVifJtNHm7uxqNJphlFbT-dza31eUELKTUhXpYFl7bs76ikBZMaC8u4MKbEngtRcGI5dVRwSYqS0CE433JNDClF59UqVp86rhVGalNZ_VXuvWdb70ono2sfdWOqtHuQghPGNsxs66tS677_dB0_lMhpztXica6en9iM3s-4mu642iS1DF1s-sb_5P8A7UlvrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Model for Calculating the Viscosity of Aqueous Solutions</title><source>ACS Publications</source><creator>LALIBERTE, Marc</creator><creatorcontrib>LALIBERTE, Marc</creatorcontrib><description>A new model for calculating the viscosity of aqueous solutions has been developed. Parameters for 74 solutes were established based on a critical review of the literature for solutions of one solute in water, with over 9000 points included. The average difference between the calculated and experimental viscosities is less than 0.1 %, and the standard deviation of this difference is 3.7 % of the average experimental viscosity. The model was validated by estimating published viscosity for systems of more than one solute in water. The average difference between experimental and calculated values for 1700 points is −2.7 %, and the standard deviation of this difference is 16 % of the average experimental viscosity. The median standard deviation of the difference between experimental and calculated values is 3.5 % of the experimental viscosity. The solutes studied are (NH4)2SO4, AlCl3, BaCl2, Ca(NO3)2, CaCl2, Cd(NO3)2, CdCl2, CdSO4, CoCl2, CoSO4, Cr2(SO4)3, CrCl3, Cu(NO3)2, CuCl2, CuSO4, Fe2(SO4)3, FeCl2, FeSO4, H2O2, H2SO4, H3PO4, HCH3CO2 (acetic acid), HCHO2 (formic acid), HCl, HCN, HNO3, K2CO3, K2Cr2O7, K2HPO4, K2SO4, K3PO4, KBr, KCH3CO2, KCHO2, KCl, KH2PO4, KI, KNO3, KOH, Li2SO4, LiCl, LiNO3, LiOH, Mg(NO3)2, MgCl2, MgSO4, MnCl2, MnSO4, Na2CO3, Na2HPO4, Na2S2O3, Na2SO3, Na2SO4, Na3PO4, NaBr, NaCH3CO2, NaCl, NaClO3, NaF, NaH2PO4, NaI, NaNO3, NaOH, NH3, NH4Cl, NH4NO3, NiCl2, NiSO4, Pb(NO3)2, Sr(NO3)2, SrCl2, sucrose, ZnCl2, and ZnSO4. Density data are also presented for these solutes and for NaHCO3.</description><identifier>ISSN: 0021-9568</identifier><identifier>EISSN: 1520-5134</identifier><identifier>DOI: 10.1021/je0604075</identifier><identifier>CODEN: JCEAAX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Solution properties ; Solutions</subject><ispartof>Journal of chemical and engineering data, 2007-03, Vol.52 (2), p.321-335</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a430t-a4ed7ddf793988a22f8b958db4ed0b3948a16d456ccb1f566952d53e365829b23</citedby><cites>FETCH-LOGICAL-a430t-a4ed7ddf793988a22f8b958db4ed0b3948a16d456ccb1f566952d53e365829b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/je0604075$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/je0604075$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18652442$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LALIBERTE, Marc</creatorcontrib><title>Model for Calculating the Viscosity of Aqueous Solutions</title><title>Journal of chemical and engineering data</title><addtitle>J. Chem. Eng. Data</addtitle><description>A new model for calculating the viscosity of aqueous solutions has been developed. Parameters for 74 solutes were established based on a critical review of the literature for solutions of one solute in water, with over 9000 points included. The average difference between the calculated and experimental viscosities is less than 0.1 %, and the standard deviation of this difference is 3.7 % of the average experimental viscosity. The model was validated by estimating published viscosity for systems of more than one solute in water. The average difference between experimental and calculated values for 1700 points is −2.7 %, and the standard deviation of this difference is 16 % of the average experimental viscosity. The median standard deviation of the difference between experimental and calculated values is 3.5 % of the experimental viscosity. The solutes studied are (NH4)2SO4, AlCl3, BaCl2, Ca(NO3)2, CaCl2, Cd(NO3)2, CdCl2, CdSO4, CoCl2, CoSO4, Cr2(SO4)3, CrCl3, Cu(NO3)2, CuCl2, CuSO4, Fe2(SO4)3, FeCl2, FeSO4, H2O2, H2SO4, H3PO4, HCH3CO2 (acetic acid), HCHO2 (formic acid), HCl, HCN, HNO3, K2CO3, K2Cr2O7, K2HPO4, K2SO4, K3PO4, KBr, KCH3CO2, KCHO2, KCl, KH2PO4, KI, KNO3, KOH, Li2SO4, LiCl, LiNO3, LiOH, Mg(NO3)2, MgCl2, MgSO4, MnCl2, MnSO4, Na2CO3, Na2HPO4, Na2S2O3, Na2SO3, Na2SO4, Na3PO4, NaBr, NaCH3CO2, NaCl, NaClO3, NaF, NaH2PO4, NaI, NaNO3, NaOH, NH3, NH4Cl, NH4NO3, NiCl2, NiSO4, Pb(NO3)2, Sr(NO3)2, SrCl2, sucrose, ZnCl2, and ZnSO4. Density data are also presented for these solutes and for NaHCO3.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Solution properties</subject><subject>Solutions</subject><issn>0021-9568</issn><issn>1520-5134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNptj0lPwzAQhS0EEqVw4B_4woFDwHucY1WxibYsLVwtxwukhLjYiUT_PamK6IXLjDTvzff0ADjF6AIjgi-XDgnEUM73wABzgjKOKdsHA9SLWcGFPARHKS0RQiwneADkNFhXQx8iHOvadLVuq-YNtu8OvlbJhFS1axg8HH11LnQJzkPdtVVo0jE48LpO7uR3D8HL9dVifJtNHm7uxqNJphlFbT-dza31eUELKTUhXpYFl7bs76ikBZMaC8u4MKbEngtRcGI5dVRwSYqS0CE433JNDClF59UqVp86rhVGalNZ_VXuvWdb70ono2sfdWOqtHuQghPGNsxs66tS677_dB0_lMhpztXica6en9iM3s-4mu642iS1DF1s-sb_5P8A7UlvrA</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>LALIBERTE, Marc</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070301</creationdate><title>Model for Calculating the Viscosity of Aqueous Solutions</title><author>LALIBERTE, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a430t-a4ed7ddf793988a22f8b958db4ed0b3948a16d456ccb1f566952d53e365829b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Solution properties</topic><topic>Solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LALIBERTE, Marc</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of chemical and engineering data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LALIBERTE, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model for Calculating the Viscosity of Aqueous Solutions</atitle><jtitle>Journal of chemical and engineering data</jtitle><addtitle>J. Chem. Eng. Data</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>52</volume><issue>2</issue><spage>321</spage><epage>335</epage><pages>321-335</pages><issn>0021-9568</issn><eissn>1520-5134</eissn><coden>JCEAAX</coden><abstract>A new model for calculating the viscosity of aqueous solutions has been developed. Parameters for 74 solutes were established based on a critical review of the literature for solutions of one solute in water, with over 9000 points included. The average difference between the calculated and experimental viscosities is less than 0.1 %, and the standard deviation of this difference is 3.7 % of the average experimental viscosity. The model was validated by estimating published viscosity for systems of more than one solute in water. The average difference between experimental and calculated values for 1700 points is −2.7 %, and the standard deviation of this difference is 16 % of the average experimental viscosity. The median standard deviation of the difference between experimental and calculated values is 3.5 % of the experimental viscosity. The solutes studied are (NH4)2SO4, AlCl3, BaCl2, Ca(NO3)2, CaCl2, Cd(NO3)2, CdCl2, CdSO4, CoCl2, CoSO4, Cr2(SO4)3, CrCl3, Cu(NO3)2, CuCl2, CuSO4, Fe2(SO4)3, FeCl2, FeSO4, H2O2, H2SO4, H3PO4, HCH3CO2 (acetic acid), HCHO2 (formic acid), HCl, HCN, HNO3, K2CO3, K2Cr2O7, K2HPO4, K2SO4, K3PO4, KBr, KCH3CO2, KCHO2, KCl, KH2PO4, KI, KNO3, KOH, Li2SO4, LiCl, LiNO3, LiOH, Mg(NO3)2, MgCl2, MgSO4, MnCl2, MnSO4, Na2CO3, Na2HPO4, Na2S2O3, Na2SO3, Na2SO4, Na3PO4, NaBr, NaCH3CO2, NaCl, NaClO3, NaF, NaH2PO4, NaI, NaNO3, NaOH, NH3, NH4Cl, NH4NO3, NiCl2, NiSO4, Pb(NO3)2, Sr(NO3)2, SrCl2, sucrose, ZnCl2, and ZnSO4. Density data are also presented for these solutes and for NaHCO3.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/je0604075</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9568
ispartof Journal of chemical and engineering data, 2007-03, Vol.52 (2), p.321-335
issn 0021-9568
1520-5134
language eng
recordid cdi_crossref_primary_10_1021_je0604075
source ACS Publications
subjects Chemistry
Exact sciences and technology
General and physical chemistry
Solution properties
Solutions
title Model for Calculating the Viscosity of Aqueous Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20for%20Calculating%20the%20Viscosity%20of%20Aqueous%20Solutions&rft.jtitle=Journal%20of%20chemical%20and%20engineering%20data&rft.au=LALIBERTE,%20Marc&rft.date=2007-03-01&rft.volume=52&rft.issue=2&rft.spage=321&rft.epage=335&rft.pages=321-335&rft.issn=0021-9568&rft.eissn=1520-5134&rft.coden=JCEAAX&rft_id=info:doi/10.1021/je0604075&rft_dat=%3Cistex_cross%3Eark_67375_TPS_RQ4N3KN5_M%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true