Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA

Photophysics tunability through alteration of framework aperture (metal–organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-03, Vol.142 (10), p.4769-4783
Hauptverfasser: Dolgopolova, Ekaterina A, Berseneva, Anna A, Faillace, Martín S, Ejegbavwo, Otega A, Leith, Gabrielle A, Choi, Seok W, Gregory, Haley N, Rice, Allison M, Smith, Mark D, Chruszcz, Maksymilian, Garashchuk, Sophya, Mythreye, Karthikeyan, Shustova, Natalia B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4783
container_issue 10
container_start_page 4769
container_title Journal of the American Chemical Society
container_volume 142
creator Dolgopolova, Ekaterina A
Berseneva, Anna A
Faillace, Martín S
Ejegbavwo, Otega A
Leith, Gabrielle A
Choi, Seok W
Gregory, Haley N
Rice, Allison M
Smith, Mark D
Chruszcz, Maksymilian
Garashchuk, Sophya
Mythreye, Karthikeyan
Shustova, Natalia B
description Photophysics tunability through alteration of framework aperture (metal–organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photophysical response of integrated 5-(3-chlorobenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (Cl-BI) chromophore allowed us to establish a photophysics–aperture relationship. To shed light on the observed correlation, the framework confined environment was replicated using a molecular cage, Pd6(TPT)4 (TPT = 2,4,6-tri­(pyridin-4-yl)-1,3,5-triazine), thus allowing for utilization of crystallography, spectroscopy, and theoretical simulations to reveal the effect a confined space has on the chromophore’s molecular conformation (including disruption of strong hydrogen bonding and novel conformer formation) and any associated changes on a photophysical response. Furthermore, the chosen Cl-oHBI@Pd6(TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one, chromophore) system was applied as a tool for targeted cargo delivery of a chromophore to the confined space of DNA, which resulted in promotion of chromophore–DNA interactions through a well-established intercalation mechanism. Moreover, the developed principles were applied toward utilizing a HBI-based chromophore as a fluorescent probe on the example of macrophage cells. For the first time, suppression of non-radiative decay pathways of a chromophore was tested by anchoring the chromophore to a framework metal node, portending a potential avenue to develop an alternative to natural biomarkers. Overall, these studies are among the first attempts to demonstrate the unrevealed potential of a confined scaffold environment for tailoring a material’s photophysical response.
doi_str_mv 10.1021/jacs.9b13505
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jacs_9b13505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359409660</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-dbe73cb22c96402f4bc6518d9f2d7cf51b2dd3d40e60bbc255531c4cee7500143</originalsourceid><addsrcrecordid>eNqNkc9PFTEQgBujkSd482z2aAKL7bTdH0eyCJKgeMDzpu3OQp-77bPdhXDz6Bn_Q_4S-vKeeOHgqdPMN5OZbwh5x-gho8A-LpWJh7VmXFL5giyYBJpLBsVLsqCUQl5WBd8hb2Jcpq-Air0mOxxoySvBF2RovOutwxHdlB8He4Mu-3btJ7-6vovWxMy6rFFXGA-yxt-oIWEPv-8vwpVy1mQnQY1468OPlP6Ckxoefv15Lqdclx1_Pdojr3o1RHy7fXfJ95NPl83n_Pzi9Kw5Os8VBzHlncaSGw1g6kJQ6IU2hWRVV_fQlaaXTEPX8U5QLKjWBqSUnBlhEEtJKRN8l3zY9F0F_3PGOLWjjQaHQTn0c2yBy1rQuihoQg82qAk-xoB9uwp2VOGuZbRd-23Xftut34S_33ae9YjdE_xXaAKqDXCL2vfRWHQGn7B0AQkFrwFSxGVjJzVZ7xo_uymV7v9_6b8d1-Mt_RxcMvr80I9GN6aC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359409660</pqid></control><display><type>article</type><title>Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>American Chemical Society Journals</source><creator>Dolgopolova, Ekaterina A ; Berseneva, Anna A ; Faillace, Martín S ; Ejegbavwo, Otega A ; Leith, Gabrielle A ; Choi, Seok W ; Gregory, Haley N ; Rice, Allison M ; Smith, Mark D ; Chruszcz, Maksymilian ; Garashchuk, Sophya ; Mythreye, Karthikeyan ; Shustova, Natalia B</creator><creatorcontrib>Dolgopolova, Ekaterina A ; Berseneva, Anna A ; Faillace, Martín S ; Ejegbavwo, Otega A ; Leith, Gabrielle A ; Choi, Seok W ; Gregory, Haley N ; Rice, Allison M ; Smith, Mark D ; Chruszcz, Maksymilian ; Garashchuk, Sophya ; Mythreye, Karthikeyan ; Shustova, Natalia B</creatorcontrib><description>Photophysics tunability through alteration of framework aperture (metal–organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photophysical response of integrated 5-(3-chlorobenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (Cl-BI) chromophore allowed us to establish a photophysics–aperture relationship. To shed light on the observed correlation, the framework confined environment was replicated using a molecular cage, Pd6(TPT)4 (TPT = 2,4,6-tri­(pyridin-4-yl)-1,3,5-triazine), thus allowing for utilization of crystallography, spectroscopy, and theoretical simulations to reveal the effect a confined space has on the chromophore’s molecular conformation (including disruption of strong hydrogen bonding and novel conformer formation) and any associated changes on a photophysical response. Furthermore, the chosen Cl-oHBI@Pd6(TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one, chromophore) system was applied as a tool for targeted cargo delivery of a chromophore to the confined space of DNA, which resulted in promotion of chromophore–DNA interactions through a well-established intercalation mechanism. Moreover, the developed principles were applied toward utilizing a HBI-based chromophore as a fluorescent probe on the example of macrophage cells. For the first time, suppression of non-radiative decay pathways of a chromophore was tested by anchoring the chromophore to a framework metal node, portending a potential avenue to develop an alternative to natural biomarkers. Overall, these studies are among the first attempts to demonstrate the unrevealed potential of a confined scaffold environment for tailoring a material’s photophysical response.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b13505</identifier><identifier>PMID: 32073843</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; DNA - chemistry ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - radiation effects ; HeLa Cells ; Humans ; Imidazoles - chemistry ; Imidazoles - radiation effects ; Intercalating Agents - chemistry ; Intercalating Agents - radiation effects ; Light ; Metal-Organic Frameworks - chemistry ; Molecular Conformation ; Physical Sciences ; Science &amp; Technology ; Triazines - chemistry</subject><ispartof>Journal of the American Chemical Society, 2020-03, Vol.142 (10), p.4769-4783</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526392200035</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a324t-dbe73cb22c96402f4bc6518d9f2d7cf51b2dd3d40e60bbc255531c4cee7500143</citedby><cites>FETCH-LOGICAL-a324t-dbe73cb22c96402f4bc6518d9f2d7cf51b2dd3d40e60bbc255531c4cee7500143</cites><orcidid>0000-0001-7521-5485 ; 0000-0003-0862-4566 ; 0000-0003-3952-1949 ; 0000-0003-2452-7379 ; 0000-0001-9739-2212 ; 0000-0002-1236-9329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.9b13505$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.9b13505$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,28255,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32073843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolgopolova, Ekaterina A</creatorcontrib><creatorcontrib>Berseneva, Anna A</creatorcontrib><creatorcontrib>Faillace, Martín S</creatorcontrib><creatorcontrib>Ejegbavwo, Otega A</creatorcontrib><creatorcontrib>Leith, Gabrielle A</creatorcontrib><creatorcontrib>Choi, Seok W</creatorcontrib><creatorcontrib>Gregory, Haley N</creatorcontrib><creatorcontrib>Rice, Allison M</creatorcontrib><creatorcontrib>Smith, Mark D</creatorcontrib><creatorcontrib>Chruszcz, Maksymilian</creatorcontrib><creatorcontrib>Garashchuk, Sophya</creatorcontrib><creatorcontrib>Mythreye, Karthikeyan</creatorcontrib><creatorcontrib>Shustova, Natalia B</creatorcontrib><title>Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA</title><title>Journal of the American Chemical Society</title><addtitle>J AM CHEM SOC</addtitle><addtitle>J. Am. Chem. Soc</addtitle><description>Photophysics tunability through alteration of framework aperture (metal–organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photophysical response of integrated 5-(3-chlorobenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (Cl-BI) chromophore allowed us to establish a photophysics–aperture relationship. To shed light on the observed correlation, the framework confined environment was replicated using a molecular cage, Pd6(TPT)4 (TPT = 2,4,6-tri­(pyridin-4-yl)-1,3,5-triazine), thus allowing for utilization of crystallography, spectroscopy, and theoretical simulations to reveal the effect a confined space has on the chromophore’s molecular conformation (including disruption of strong hydrogen bonding and novel conformer formation) and any associated changes on a photophysical response. Furthermore, the chosen Cl-oHBI@Pd6(TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one, chromophore) system was applied as a tool for targeted cargo delivery of a chromophore to the confined space of DNA, which resulted in promotion of chromophore–DNA interactions through a well-established intercalation mechanism. Moreover, the developed principles were applied toward utilizing a HBI-based chromophore as a fluorescent probe on the example of macrophage cells. For the first time, suppression of non-radiative decay pathways of a chromophore was tested by anchoring the chromophore to a framework metal node, portending a potential avenue to develop an alternative to natural biomarkers. Overall, these studies are among the first attempts to demonstrate the unrevealed potential of a confined scaffold environment for tailoring a material’s photophysical response.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>DNA - chemistry</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - radiation effects</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Imidazoles - chemistry</subject><subject>Imidazoles - radiation effects</subject><subject>Intercalating Agents - chemistry</subject><subject>Intercalating Agents - radiation effects</subject><subject>Light</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Molecular Conformation</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Triazines - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9PFTEQgBujkSd482z2aAKL7bTdH0eyCJKgeMDzpu3OQp-77bPdhXDz6Bn_Q_4S-vKeeOHgqdPMN5OZbwh5x-gho8A-LpWJh7VmXFL5giyYBJpLBsVLsqCUQl5WBd8hb2Jcpq-Air0mOxxoySvBF2RovOutwxHdlB8He4Mu-3btJ7-6vovWxMy6rFFXGA-yxt-oIWEPv-8vwpVy1mQnQY1468OPlP6Ckxoefv15Lqdclx1_Pdojr3o1RHy7fXfJ95NPl83n_Pzi9Kw5Os8VBzHlncaSGw1g6kJQ6IU2hWRVV_fQlaaXTEPX8U5QLKjWBqSUnBlhEEtJKRN8l3zY9F0F_3PGOLWjjQaHQTn0c2yBy1rQuihoQg82qAk-xoB9uwp2VOGuZbRd-23Xftut34S_33ae9YjdE_xXaAKqDXCL2vfRWHQGn7B0AQkFrwFSxGVjJzVZ7xo_uymV7v9_6b8d1-Mt_RxcMvr80I9GN6aC</recordid><startdate>20200311</startdate><enddate>20200311</enddate><creator>Dolgopolova, Ekaterina A</creator><creator>Berseneva, Anna A</creator><creator>Faillace, Martín S</creator><creator>Ejegbavwo, Otega A</creator><creator>Leith, Gabrielle A</creator><creator>Choi, Seok W</creator><creator>Gregory, Haley N</creator><creator>Rice, Allison M</creator><creator>Smith, Mark D</creator><creator>Chruszcz, Maksymilian</creator><creator>Garashchuk, Sophya</creator><creator>Mythreye, Karthikeyan</creator><creator>Shustova, Natalia B</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>1KM</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7521-5485</orcidid><orcidid>https://orcid.org/0000-0003-0862-4566</orcidid><orcidid>https://orcid.org/0000-0003-3952-1949</orcidid><orcidid>https://orcid.org/0000-0003-2452-7379</orcidid><orcidid>https://orcid.org/0000-0001-9739-2212</orcidid><orcidid>https://orcid.org/0000-0002-1236-9329</orcidid></search><sort><creationdate>20200311</creationdate><title>Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA</title><author>Dolgopolova, Ekaterina A ; Berseneva, Anna A ; Faillace, Martín S ; Ejegbavwo, Otega A ; Leith, Gabrielle A ; Choi, Seok W ; Gregory, Haley N ; Rice, Allison M ; Smith, Mark D ; Chruszcz, Maksymilian ; Garashchuk, Sophya ; Mythreye, Karthikeyan ; Shustova, Natalia B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-dbe73cb22c96402f4bc6518d9f2d7cf51b2dd3d40e60bbc255531c4cee7500143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>DNA - chemistry</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - radiation effects</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Imidazoles - chemistry</topic><topic>Imidazoles - radiation effects</topic><topic>Intercalating Agents - chemistry</topic><topic>Intercalating Agents - radiation effects</topic><topic>Light</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Molecular Conformation</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Triazines - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolgopolova, Ekaterina A</creatorcontrib><creatorcontrib>Berseneva, Anna A</creatorcontrib><creatorcontrib>Faillace, Martín S</creatorcontrib><creatorcontrib>Ejegbavwo, Otega A</creatorcontrib><creatorcontrib>Leith, Gabrielle A</creatorcontrib><creatorcontrib>Choi, Seok W</creatorcontrib><creatorcontrib>Gregory, Haley N</creatorcontrib><creatorcontrib>Rice, Allison M</creatorcontrib><creatorcontrib>Smith, Mark D</creatorcontrib><creatorcontrib>Chruszcz, Maksymilian</creatorcontrib><creatorcontrib>Garashchuk, Sophya</creatorcontrib><creatorcontrib>Mythreye, Karthikeyan</creatorcontrib><creatorcontrib>Shustova, Natalia B</creatorcontrib><collection>Index Chemicus</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgopolova, Ekaterina A</au><au>Berseneva, Anna A</au><au>Faillace, Martín S</au><au>Ejegbavwo, Otega A</au><au>Leith, Gabrielle A</au><au>Choi, Seok W</au><au>Gregory, Haley N</au><au>Rice, Allison M</au><au>Smith, Mark D</au><au>Chruszcz, Maksymilian</au><au>Garashchuk, Sophya</au><au>Mythreye, Karthikeyan</au><au>Shustova, Natalia B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA</atitle><jtitle>Journal of the American Chemical Society</jtitle><stitle>J AM CHEM SOC</stitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-03-11</date><risdate>2020</risdate><volume>142</volume><issue>10</issue><spage>4769</spage><epage>4783</epage><pages>4769-4783</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Photophysics tunability through alteration of framework aperture (metal–organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photophysical response of integrated 5-(3-chlorobenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (Cl-BI) chromophore allowed us to establish a photophysics–aperture relationship. To shed light on the observed correlation, the framework confined environment was replicated using a molecular cage, Pd6(TPT)4 (TPT = 2,4,6-tri­(pyridin-4-yl)-1,3,5-triazine), thus allowing for utilization of crystallography, spectroscopy, and theoretical simulations to reveal the effect a confined space has on the chromophore’s molecular conformation (including disruption of strong hydrogen bonding and novel conformer formation) and any associated changes on a photophysical response. Furthermore, the chosen Cl-oHBI@Pd6(TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one, chromophore) system was applied as a tool for targeted cargo delivery of a chromophore to the confined space of DNA, which resulted in promotion of chromophore–DNA interactions through a well-established intercalation mechanism. Moreover, the developed principles were applied toward utilizing a HBI-based chromophore as a fluorescent probe on the example of macrophage cells. For the first time, suppression of non-radiative decay pathways of a chromophore was tested by anchoring the chromophore to a framework metal node, portending a potential avenue to develop an alternative to natural biomarkers. Overall, these studies are among the first attempts to demonstrate the unrevealed potential of a confined scaffold environment for tailoring a material’s photophysical response.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32073843</pmid><doi>10.1021/jacs.9b13505</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7521-5485</orcidid><orcidid>https://orcid.org/0000-0003-0862-4566</orcidid><orcidid>https://orcid.org/0000-0003-3952-1949</orcidid><orcidid>https://orcid.org/0000-0003-2452-7379</orcidid><orcidid>https://orcid.org/0000-0001-9739-2212</orcidid><orcidid>https://orcid.org/0000-0002-1236-9329</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-03, Vol.142 (10), p.4769-4783
issn 0002-7863
1520-5126
language eng
recordid cdi_crossref_primary_10_1021_jacs_9b13505
source MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society Journals
subjects Chemistry
Chemistry, Multidisciplinary
DNA - chemistry
Fluorescent Dyes - chemistry
Fluorescent Dyes - radiation effects
HeLa Cells
Humans
Imidazoles - chemistry
Imidazoles - radiation effects
Intercalating Agents - chemistry
Intercalating Agents - radiation effects
Light
Metal-Organic Frameworks - chemistry
Molecular Conformation
Physical Sciences
Science & Technology
Triazines - chemistry
title Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T21%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confinement-Driven%20Photophysics%20in%20Cages,%20Covalent%E2%88%92Organic%20Frameworks,%20Metal%E2%80%93Organic%20Frameworks,%20and%20DNA&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Dolgopolova,%20Ekaterina%20A&rft.date=2020-03-11&rft.volume=142&rft.issue=10&rft.spage=4769&rft.epage=4783&rft.pages=4769-4783&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b13505&rft_dat=%3Cproquest_cross%3E2359409660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359409660&rft_id=info:pmid/32073843&rfr_iscdi=true