Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA
Photophysics tunability through alteration of framework aperture (metal–organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photo...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-03, Vol.142 (10), p.4769-4783 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4783 |
---|---|
container_issue | 10 |
container_start_page | 4769 |
container_title | Journal of the American Chemical Society |
container_volume | 142 |
creator | Dolgopolova, Ekaterina A Berseneva, Anna A Faillace, Martín S Ejegbavwo, Otega A Leith, Gabrielle A Choi, Seok W Gregory, Haley N Rice, Allison M Smith, Mark D Chruszcz, Maksymilian Garashchuk, Sophya Mythreye, Karthikeyan Shustova, Natalia B |
description | Photophysics tunability through alteration of framework aperture (metal–organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photophysical response of integrated 5-(3-chlorobenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (Cl-BI) chromophore allowed us to establish a photophysics–aperture relationship. To shed light on the observed correlation, the framework confined environment was replicated using a molecular cage, Pd6(TPT)4 (TPT = 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine), thus allowing for utilization of crystallography, spectroscopy, and theoretical simulations to reveal the effect a confined space has on the chromophore’s molecular conformation (including disruption of strong hydrogen bonding and novel conformer formation) and any associated changes on a photophysical response. Furthermore, the chosen Cl-oHBI@Pd6(TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one, chromophore) system was applied as a tool for targeted cargo delivery of a chromophore to the confined space of DNA, which resulted in promotion of chromophore–DNA interactions through a well-established intercalation mechanism. Moreover, the developed principles were applied toward utilizing a HBI-based chromophore as a fluorescent probe on the example of macrophage cells. For the first time, suppression of non-radiative decay pathways of a chromophore was tested by anchoring the chromophore to a framework metal node, portending a potential avenue to develop an alternative to natural biomarkers. Overall, these studies are among the first attempts to demonstrate the unrevealed potential of a confined scaffold environment for tailoring a material’s photophysical response. |
doi_str_mv | 10.1021/jacs.9b13505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jacs_9b13505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359409660</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-dbe73cb22c96402f4bc6518d9f2d7cf51b2dd3d40e60bbc255531c4cee7500143</originalsourceid><addsrcrecordid>eNqNkc9PFTEQgBujkSd482z2aAKL7bTdH0eyCJKgeMDzpu3OQp-77bPdhXDz6Bn_Q_4S-vKeeOHgqdPMN5OZbwh5x-gho8A-LpWJh7VmXFL5giyYBJpLBsVLsqCUQl5WBd8hb2Jcpq-Air0mOxxoySvBF2RovOutwxHdlB8He4Mu-3btJ7-6vovWxMy6rFFXGA-yxt-oIWEPv-8vwpVy1mQnQY1468OPlP6Ckxoefv15Lqdclx1_Pdojr3o1RHy7fXfJ95NPl83n_Pzi9Kw5Os8VBzHlncaSGw1g6kJQ6IU2hWRVV_fQlaaXTEPX8U5QLKjWBqSUnBlhEEtJKRN8l3zY9F0F_3PGOLWjjQaHQTn0c2yBy1rQuihoQg82qAk-xoB9uwp2VOGuZbRd-23Xftut34S_33ae9YjdE_xXaAKqDXCL2vfRWHQGn7B0AQkFrwFSxGVjJzVZ7xo_uymV7v9_6b8d1-Mt_RxcMvr80I9GN6aC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359409660</pqid></control><display><type>article</type><title>Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>American Chemical Society Journals</source><creator>Dolgopolova, Ekaterina A ; Berseneva, Anna A ; Faillace, Martín S ; Ejegbavwo, Otega A ; Leith, Gabrielle A ; Choi, Seok W ; Gregory, Haley N ; Rice, Allison M ; Smith, Mark D ; Chruszcz, Maksymilian ; Garashchuk, Sophya ; Mythreye, Karthikeyan ; Shustova, Natalia B</creator><creatorcontrib>Dolgopolova, Ekaterina A ; Berseneva, Anna A ; Faillace, Martín S ; Ejegbavwo, Otega A ; Leith, Gabrielle A ; Choi, Seok W ; Gregory, Haley N ; Rice, Allison M ; Smith, Mark D ; Chruszcz, Maksymilian ; Garashchuk, Sophya ; Mythreye, Karthikeyan ; Shustova, Natalia B</creatorcontrib><description>Photophysics tunability through alteration of framework aperture (metal–organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photophysical response of integrated 5-(3-chlorobenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (Cl-BI) chromophore allowed us to establish a photophysics–aperture relationship. To shed light on the observed correlation, the framework confined environment was replicated using a molecular cage, Pd6(TPT)4 (TPT = 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine), thus allowing for utilization of crystallography, spectroscopy, and theoretical simulations to reveal the effect a confined space has on the chromophore’s molecular conformation (including disruption of strong hydrogen bonding and novel conformer formation) and any associated changes on a photophysical response. Furthermore, the chosen Cl-oHBI@Pd6(TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one, chromophore) system was applied as a tool for targeted cargo delivery of a chromophore to the confined space of DNA, which resulted in promotion of chromophore–DNA interactions through a well-established intercalation mechanism. Moreover, the developed principles were applied toward utilizing a HBI-based chromophore as a fluorescent probe on the example of macrophage cells. For the first time, suppression of non-radiative decay pathways of a chromophore was tested by anchoring the chromophore to a framework metal node, portending a potential avenue to develop an alternative to natural biomarkers. Overall, these studies are among the first attempts to demonstrate the unrevealed potential of a confined scaffold environment for tailoring a material’s photophysical response.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b13505</identifier><identifier>PMID: 32073843</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; DNA - chemistry ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - radiation effects ; HeLa Cells ; Humans ; Imidazoles - chemistry ; Imidazoles - radiation effects ; Intercalating Agents - chemistry ; Intercalating Agents - radiation effects ; Light ; Metal-Organic Frameworks - chemistry ; Molecular Conformation ; Physical Sciences ; Science & Technology ; Triazines - chemistry</subject><ispartof>Journal of the American Chemical Society, 2020-03, Vol.142 (10), p.4769-4783</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526392200035</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a324t-dbe73cb22c96402f4bc6518d9f2d7cf51b2dd3d40e60bbc255531c4cee7500143</citedby><cites>FETCH-LOGICAL-a324t-dbe73cb22c96402f4bc6518d9f2d7cf51b2dd3d40e60bbc255531c4cee7500143</cites><orcidid>0000-0001-7521-5485 ; 0000-0003-0862-4566 ; 0000-0003-3952-1949 ; 0000-0003-2452-7379 ; 0000-0001-9739-2212 ; 0000-0002-1236-9329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.9b13505$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.9b13505$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,28255,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32073843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolgopolova, Ekaterina A</creatorcontrib><creatorcontrib>Berseneva, Anna A</creatorcontrib><creatorcontrib>Faillace, Martín S</creatorcontrib><creatorcontrib>Ejegbavwo, Otega A</creatorcontrib><creatorcontrib>Leith, Gabrielle A</creatorcontrib><creatorcontrib>Choi, Seok W</creatorcontrib><creatorcontrib>Gregory, Haley N</creatorcontrib><creatorcontrib>Rice, Allison M</creatorcontrib><creatorcontrib>Smith, Mark D</creatorcontrib><creatorcontrib>Chruszcz, Maksymilian</creatorcontrib><creatorcontrib>Garashchuk, Sophya</creatorcontrib><creatorcontrib>Mythreye, Karthikeyan</creatorcontrib><creatorcontrib>Shustova, Natalia B</creatorcontrib><title>Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA</title><title>Journal of the American Chemical Society</title><addtitle>J AM CHEM SOC</addtitle><addtitle>J. Am. Chem. Soc</addtitle><description>Photophysics tunability through alteration of framework aperture (metal–organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photophysical response of integrated 5-(3-chlorobenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (Cl-BI) chromophore allowed us to establish a photophysics–aperture relationship. To shed light on the observed correlation, the framework confined environment was replicated using a molecular cage, Pd6(TPT)4 (TPT = 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine), thus allowing for utilization of crystallography, spectroscopy, and theoretical simulations to reveal the effect a confined space has on the chromophore’s molecular conformation (including disruption of strong hydrogen bonding and novel conformer formation) and any associated changes on a photophysical response. Furthermore, the chosen Cl-oHBI@Pd6(TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one, chromophore) system was applied as a tool for targeted cargo delivery of a chromophore to the confined space of DNA, which resulted in promotion of chromophore–DNA interactions through a well-established intercalation mechanism. Moreover, the developed principles were applied toward utilizing a HBI-based chromophore as a fluorescent probe on the example of macrophage cells. For the first time, suppression of non-radiative decay pathways of a chromophore was tested by anchoring the chromophore to a framework metal node, portending a potential avenue to develop an alternative to natural biomarkers. Overall, these studies are among the first attempts to demonstrate the unrevealed potential of a confined scaffold environment for tailoring a material’s photophysical response.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>DNA - chemistry</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - radiation effects</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Imidazoles - chemistry</subject><subject>Imidazoles - radiation effects</subject><subject>Intercalating Agents - chemistry</subject><subject>Intercalating Agents - radiation effects</subject><subject>Light</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Molecular Conformation</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Triazines - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9PFTEQgBujkSd482z2aAKL7bTdH0eyCJKgeMDzpu3OQp-77bPdhXDz6Bn_Q_4S-vKeeOHgqdPMN5OZbwh5x-gho8A-LpWJh7VmXFL5giyYBJpLBsVLsqCUQl5WBd8hb2Jcpq-Air0mOxxoySvBF2RovOutwxHdlB8He4Mu-3btJ7-6vovWxMy6rFFXGA-yxt-oIWEPv-8vwpVy1mQnQY1468OPlP6Ckxoefv15Lqdclx1_Pdojr3o1RHy7fXfJ95NPl83n_Pzi9Kw5Os8VBzHlncaSGw1g6kJQ6IU2hWRVV_fQlaaXTEPX8U5QLKjWBqSUnBlhEEtJKRN8l3zY9F0F_3PGOLWjjQaHQTn0c2yBy1rQuihoQg82qAk-xoB9uwp2VOGuZbRd-23Xftut34S_33ae9YjdE_xXaAKqDXCL2vfRWHQGn7B0AQkFrwFSxGVjJzVZ7xo_uymV7v9_6b8d1-Mt_RxcMvr80I9GN6aC</recordid><startdate>20200311</startdate><enddate>20200311</enddate><creator>Dolgopolova, Ekaterina A</creator><creator>Berseneva, Anna A</creator><creator>Faillace, Martín S</creator><creator>Ejegbavwo, Otega A</creator><creator>Leith, Gabrielle A</creator><creator>Choi, Seok W</creator><creator>Gregory, Haley N</creator><creator>Rice, Allison M</creator><creator>Smith, Mark D</creator><creator>Chruszcz, Maksymilian</creator><creator>Garashchuk, Sophya</creator><creator>Mythreye, Karthikeyan</creator><creator>Shustova, Natalia B</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>1KM</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7521-5485</orcidid><orcidid>https://orcid.org/0000-0003-0862-4566</orcidid><orcidid>https://orcid.org/0000-0003-3952-1949</orcidid><orcidid>https://orcid.org/0000-0003-2452-7379</orcidid><orcidid>https://orcid.org/0000-0001-9739-2212</orcidid><orcidid>https://orcid.org/0000-0002-1236-9329</orcidid></search><sort><creationdate>20200311</creationdate><title>Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA</title><author>Dolgopolova, Ekaterina A ; Berseneva, Anna A ; Faillace, Martín S ; Ejegbavwo, Otega A ; Leith, Gabrielle A ; Choi, Seok W ; Gregory, Haley N ; Rice, Allison M ; Smith, Mark D ; Chruszcz, Maksymilian ; Garashchuk, Sophya ; Mythreye, Karthikeyan ; Shustova, Natalia B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-dbe73cb22c96402f4bc6518d9f2d7cf51b2dd3d40e60bbc255531c4cee7500143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>DNA - chemistry</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - radiation effects</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Imidazoles - chemistry</topic><topic>Imidazoles - radiation effects</topic><topic>Intercalating Agents - chemistry</topic><topic>Intercalating Agents - radiation effects</topic><topic>Light</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Molecular Conformation</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Triazines - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolgopolova, Ekaterina A</creatorcontrib><creatorcontrib>Berseneva, Anna A</creatorcontrib><creatorcontrib>Faillace, Martín S</creatorcontrib><creatorcontrib>Ejegbavwo, Otega A</creatorcontrib><creatorcontrib>Leith, Gabrielle A</creatorcontrib><creatorcontrib>Choi, Seok W</creatorcontrib><creatorcontrib>Gregory, Haley N</creatorcontrib><creatorcontrib>Rice, Allison M</creatorcontrib><creatorcontrib>Smith, Mark D</creatorcontrib><creatorcontrib>Chruszcz, Maksymilian</creatorcontrib><creatorcontrib>Garashchuk, Sophya</creatorcontrib><creatorcontrib>Mythreye, Karthikeyan</creatorcontrib><creatorcontrib>Shustova, Natalia B</creatorcontrib><collection>Index Chemicus</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgopolova, Ekaterina A</au><au>Berseneva, Anna A</au><au>Faillace, Martín S</au><au>Ejegbavwo, Otega A</au><au>Leith, Gabrielle A</au><au>Choi, Seok W</au><au>Gregory, Haley N</au><au>Rice, Allison M</au><au>Smith, Mark D</au><au>Chruszcz, Maksymilian</au><au>Garashchuk, Sophya</au><au>Mythreye, Karthikeyan</au><au>Shustova, Natalia B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA</atitle><jtitle>Journal of the American Chemical Society</jtitle><stitle>J AM CHEM SOC</stitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-03-11</date><risdate>2020</risdate><volume>142</volume><issue>10</issue><spage>4769</spage><epage>4783</epage><pages>4769-4783</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Photophysics tunability through alteration of framework aperture (metal–organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photophysical response of integrated 5-(3-chlorobenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (Cl-BI) chromophore allowed us to establish a photophysics–aperture relationship. To shed light on the observed correlation, the framework confined environment was replicated using a molecular cage, Pd6(TPT)4 (TPT = 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine), thus allowing for utilization of crystallography, spectroscopy, and theoretical simulations to reveal the effect a confined space has on the chromophore’s molecular conformation (including disruption of strong hydrogen bonding and novel conformer formation) and any associated changes on a photophysical response. Furthermore, the chosen Cl-oHBI@Pd6(TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one, chromophore) system was applied as a tool for targeted cargo delivery of a chromophore to the confined space of DNA, which resulted in promotion of chromophore–DNA interactions through a well-established intercalation mechanism. Moreover, the developed principles were applied toward utilizing a HBI-based chromophore as a fluorescent probe on the example of macrophage cells. For the first time, suppression of non-radiative decay pathways of a chromophore was tested by anchoring the chromophore to a framework metal node, portending a potential avenue to develop an alternative to natural biomarkers. Overall, these studies are among the first attempts to demonstrate the unrevealed potential of a confined scaffold environment for tailoring a material’s photophysical response.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32073843</pmid><doi>10.1021/jacs.9b13505</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7521-5485</orcidid><orcidid>https://orcid.org/0000-0003-0862-4566</orcidid><orcidid>https://orcid.org/0000-0003-3952-1949</orcidid><orcidid>https://orcid.org/0000-0003-2452-7379</orcidid><orcidid>https://orcid.org/0000-0001-9739-2212</orcidid><orcidid>https://orcid.org/0000-0002-1236-9329</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2020-03, Vol.142 (10), p.4769-4783 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jacs_9b13505 |
source | MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society Journals |
subjects | Chemistry Chemistry, Multidisciplinary DNA - chemistry Fluorescent Dyes - chemistry Fluorescent Dyes - radiation effects HeLa Cells Humans Imidazoles - chemistry Imidazoles - radiation effects Intercalating Agents - chemistry Intercalating Agents - radiation effects Light Metal-Organic Frameworks - chemistry Molecular Conformation Physical Sciences Science & Technology Triazines - chemistry |
title | Confinement-Driven Photophysics in Cages, Covalent−Organic Frameworks, Metal–Organic Frameworks, and DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T21%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confinement-Driven%20Photophysics%20in%20Cages,%20Covalent%E2%88%92Organic%20Frameworks,%20Metal%E2%80%93Organic%20Frameworks,%20and%20DNA&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Dolgopolova,%20Ekaterina%20A&rft.date=2020-03-11&rft.volume=142&rft.issue=10&rft.spage=4769&rft.epage=4783&rft.pages=4769-4783&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b13505&rft_dat=%3Cproquest_cross%3E2359409660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359409660&rft_id=info:pmid/32073843&rfr_iscdi=true |