Understanding Structure-Property Relationships of MoO 3 -Promoted Rh Catalysts for Syngas Conversion to Alcohols
Rh-based catalysts have shown promise for the direct conversion of syngas to higher oxygenates. Although improvements in higher oxygenate yield have been achieved by combining Rh with metal oxide promoters, details of the structure of the promoted catalyst and the role of the promoter in enhancing c...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2019-12, Vol.141 (50), p.19655-19668 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19668 |
---|---|
container_issue | 50 |
container_start_page | 19655 |
container_title | Journal of the American Chemical Society |
container_volume | 141 |
creator | Asundi, Arun S Hoffman, Adam S Bothra, Pallavi Boubnov, Alexey Vila, Fernando D Yang, Nuoya Singh, Joseph A Zeng, Li Raiford, James A Abild-Pedersen, Frank Bare, Simon R Bent, Stacey F |
description | Rh-based catalysts have shown promise for the direct conversion of syngas to higher oxygenates. Although improvements in higher oxygenate yield have been achieved by combining Rh with metal oxide promoters, details of the structure of the promoted catalyst and the role of the promoter in enhancing catalytic performance are not well understood. In this work, we show that MoO
-promoted Rh nanoparticles form a novel catalyst structure in which Mo substitutes into the Rh surface, leading to both a 66-fold increase in turnover frequency and an enhancement in oxygenate yield. By applying a combination of atomically controlled synthesis, in situ characterization, and theoretical calculations, we gain an understanding of the promoter-Rh interactions that govern catalytic performance for MoO
-promoted Rh. We use atomic layer deposition to modify Rh nanoparticles with monolayer-precise amounts of MoO
, with a high degree of control over the structure of the catalyst. Through in situ X-ray absorption spectroscopy, we find that the atomic structure of the catalytic surface under reaction conditions consists of Mo-OH species substituted into the surface of the Rh nanoparticles. Using density functional theory calculations, we identify two roles of MoO
: first, the presence of Mo-OH in the catalyst surface enhances CO dissociation and also stabilizes a methanol synthesis pathway not present in the unpromoted catalyst; and second, hydrogen spillover from Mo-OH sites to adsorbed species on the Rh surface enhances hydrogenation rates of reaction intermediates. |
doi_str_mv | 10.1021/jacs.9b07460 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jacs_9b07460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31724857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1037-c252527c692b80c332f4749ad67f2e0a62f1463f10b484a5a7c8eb6e56cac92a3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk7vvJb8ADvz1aS9HMMvUCabuy6nabJ1dE1JMqH_3o5NeS8OLzznvXgQuqdkSgmjTzvQYZqXRAlJLtCYpowkKWXyEo0JISxRmeQjdBPCbqiCZfQajThVTGSpGqNu3VbGhwhtVbcbvIr-oOPBm-TLu8742OOlaSDWrg3bugvYWfzpFpjjI7B30VR4ucVziND0IQZsncervt1AwHPX_gzTwyuODs8a7bauCbfoykITzN35TtD65fl7_pZ8LF7f57OPRFPCVaJZOkRpmbMyI5pzZoUSOVRSWWYISGapkNxSUopMQApKZ6aUJpUadM6AT9DjaVd7F4I3tuh8vQffF5QUR3HFUVxxFjfgDye8O5R7U_3Df6b4L88eavs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding Structure-Property Relationships of MoO 3 -Promoted Rh Catalysts for Syngas Conversion to Alcohols</title><source>American Chemical Society Publications</source><creator>Asundi, Arun S ; Hoffman, Adam S ; Bothra, Pallavi ; Boubnov, Alexey ; Vila, Fernando D ; Yang, Nuoya ; Singh, Joseph A ; Zeng, Li ; Raiford, James A ; Abild-Pedersen, Frank ; Bare, Simon R ; Bent, Stacey F</creator><creatorcontrib>Asundi, Arun S ; Hoffman, Adam S ; Bothra, Pallavi ; Boubnov, Alexey ; Vila, Fernando D ; Yang, Nuoya ; Singh, Joseph A ; Zeng, Li ; Raiford, James A ; Abild-Pedersen, Frank ; Bare, Simon R ; Bent, Stacey F</creatorcontrib><description>Rh-based catalysts have shown promise for the direct conversion of syngas to higher oxygenates. Although improvements in higher oxygenate yield have been achieved by combining Rh with metal oxide promoters, details of the structure of the promoted catalyst and the role of the promoter in enhancing catalytic performance are not well understood. In this work, we show that MoO
-promoted Rh nanoparticles form a novel catalyst structure in which Mo substitutes into the Rh surface, leading to both a 66-fold increase in turnover frequency and an enhancement in oxygenate yield. By applying a combination of atomically controlled synthesis, in situ characterization, and theoretical calculations, we gain an understanding of the promoter-Rh interactions that govern catalytic performance for MoO
-promoted Rh. We use atomic layer deposition to modify Rh nanoparticles with monolayer-precise amounts of MoO
, with a high degree of control over the structure of the catalyst. Through in situ X-ray absorption spectroscopy, we find that the atomic structure of the catalytic surface under reaction conditions consists of Mo-OH species substituted into the surface of the Rh nanoparticles. Using density functional theory calculations, we identify two roles of MoO
: first, the presence of Mo-OH in the catalyst surface enhances CO dissociation and also stabilizes a methanol synthesis pathway not present in the unpromoted catalyst; and second, hydrogen spillover from Mo-OH sites to adsorbed species on the Rh surface enhances hydrogenation rates of reaction intermediates.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b07460</identifier><identifier>PMID: 31724857</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the American Chemical Society, 2019-12, Vol.141 (50), p.19655-19668</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1037-c252527c692b80c332f4749ad67f2e0a62f1463f10b484a5a7c8eb6e56cac92a3</citedby><cites>FETCH-LOGICAL-c1037-c252527c692b80c332f4749ad67f2e0a62f1463f10b484a5a7c8eb6e56cac92a3</cites><orcidid>0000-0001-5249-2121 ; 0000-0002-7682-4108 ; 0000-0001-6390-0370 ; 0000-0002-1911-074X ; 0000-0002-4932-0342 ; 0000-0003-0333-6784 ; 0000-0002-1084-5336 ; 0000-0002-6508-4896 ; 0000-0002-4625-9806 ; 0000-0003-2126-5422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31724857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asundi, Arun S</creatorcontrib><creatorcontrib>Hoffman, Adam S</creatorcontrib><creatorcontrib>Bothra, Pallavi</creatorcontrib><creatorcontrib>Boubnov, Alexey</creatorcontrib><creatorcontrib>Vila, Fernando D</creatorcontrib><creatorcontrib>Yang, Nuoya</creatorcontrib><creatorcontrib>Singh, Joseph A</creatorcontrib><creatorcontrib>Zeng, Li</creatorcontrib><creatorcontrib>Raiford, James A</creatorcontrib><creatorcontrib>Abild-Pedersen, Frank</creatorcontrib><creatorcontrib>Bare, Simon R</creatorcontrib><creatorcontrib>Bent, Stacey F</creatorcontrib><title>Understanding Structure-Property Relationships of MoO 3 -Promoted Rh Catalysts for Syngas Conversion to Alcohols</title><title>Journal of the American Chemical Society</title><addtitle>J Am Chem Soc</addtitle><description>Rh-based catalysts have shown promise for the direct conversion of syngas to higher oxygenates. Although improvements in higher oxygenate yield have been achieved by combining Rh with metal oxide promoters, details of the structure of the promoted catalyst and the role of the promoter in enhancing catalytic performance are not well understood. In this work, we show that MoO
-promoted Rh nanoparticles form a novel catalyst structure in which Mo substitutes into the Rh surface, leading to both a 66-fold increase in turnover frequency and an enhancement in oxygenate yield. By applying a combination of atomically controlled synthesis, in situ characterization, and theoretical calculations, we gain an understanding of the promoter-Rh interactions that govern catalytic performance for MoO
-promoted Rh. We use atomic layer deposition to modify Rh nanoparticles with monolayer-precise amounts of MoO
, with a high degree of control over the structure of the catalyst. Through in situ X-ray absorption spectroscopy, we find that the atomic structure of the catalytic surface under reaction conditions consists of Mo-OH species substituted into the surface of the Rh nanoparticles. Using density functional theory calculations, we identify two roles of MoO
: first, the presence of Mo-OH in the catalyst surface enhances CO dissociation and also stabilizes a methanol synthesis pathway not present in the unpromoted catalyst; and second, hydrogen spillover from Mo-OH sites to adsorbed species on the Rh surface enhances hydrogenation rates of reaction intermediates.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMobk7vvJb8ADvz1aS9HMMvUCabuy6nabJ1dE1JMqH_3o5NeS8OLzznvXgQuqdkSgmjTzvQYZqXRAlJLtCYpowkKWXyEo0JISxRmeQjdBPCbqiCZfQajThVTGSpGqNu3VbGhwhtVbcbvIr-oOPBm-TLu8742OOlaSDWrg3bugvYWfzpFpjjI7B30VR4ucVziND0IQZsncervt1AwHPX_gzTwyuODs8a7bauCbfoykITzN35TtD65fl7_pZ8LF7f57OPRFPCVaJZOkRpmbMyI5pzZoUSOVRSWWYISGapkNxSUopMQApKZ6aUJpUadM6AT9DjaVd7F4I3tuh8vQffF5QUR3HFUVxxFjfgDye8O5R7U_3Df6b4L88eavs</recordid><startdate>20191218</startdate><enddate>20191218</enddate><creator>Asundi, Arun S</creator><creator>Hoffman, Adam S</creator><creator>Bothra, Pallavi</creator><creator>Boubnov, Alexey</creator><creator>Vila, Fernando D</creator><creator>Yang, Nuoya</creator><creator>Singh, Joseph A</creator><creator>Zeng, Li</creator><creator>Raiford, James A</creator><creator>Abild-Pedersen, Frank</creator><creator>Bare, Simon R</creator><creator>Bent, Stacey F</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5249-2121</orcidid><orcidid>https://orcid.org/0000-0002-7682-4108</orcidid><orcidid>https://orcid.org/0000-0001-6390-0370</orcidid><orcidid>https://orcid.org/0000-0002-1911-074X</orcidid><orcidid>https://orcid.org/0000-0002-4932-0342</orcidid><orcidid>https://orcid.org/0000-0003-0333-6784</orcidid><orcidid>https://orcid.org/0000-0002-1084-5336</orcidid><orcidid>https://orcid.org/0000-0002-6508-4896</orcidid><orcidid>https://orcid.org/0000-0002-4625-9806</orcidid><orcidid>https://orcid.org/0000-0003-2126-5422</orcidid></search><sort><creationdate>20191218</creationdate><title>Understanding Structure-Property Relationships of MoO 3 -Promoted Rh Catalysts for Syngas Conversion to Alcohols</title><author>Asundi, Arun S ; Hoffman, Adam S ; Bothra, Pallavi ; Boubnov, Alexey ; Vila, Fernando D ; Yang, Nuoya ; Singh, Joseph A ; Zeng, Li ; Raiford, James A ; Abild-Pedersen, Frank ; Bare, Simon R ; Bent, Stacey F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1037-c252527c692b80c332f4749ad67f2e0a62f1463f10b484a5a7c8eb6e56cac92a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asundi, Arun S</creatorcontrib><creatorcontrib>Hoffman, Adam S</creatorcontrib><creatorcontrib>Bothra, Pallavi</creatorcontrib><creatorcontrib>Boubnov, Alexey</creatorcontrib><creatorcontrib>Vila, Fernando D</creatorcontrib><creatorcontrib>Yang, Nuoya</creatorcontrib><creatorcontrib>Singh, Joseph A</creatorcontrib><creatorcontrib>Zeng, Li</creatorcontrib><creatorcontrib>Raiford, James A</creatorcontrib><creatorcontrib>Abild-Pedersen, Frank</creatorcontrib><creatorcontrib>Bare, Simon R</creatorcontrib><creatorcontrib>Bent, Stacey F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asundi, Arun S</au><au>Hoffman, Adam S</au><au>Bothra, Pallavi</au><au>Boubnov, Alexey</au><au>Vila, Fernando D</au><au>Yang, Nuoya</au><au>Singh, Joseph A</au><au>Zeng, Li</au><au>Raiford, James A</au><au>Abild-Pedersen, Frank</au><au>Bare, Simon R</au><au>Bent, Stacey F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Structure-Property Relationships of MoO 3 -Promoted Rh Catalysts for Syngas Conversion to Alcohols</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J Am Chem Soc</addtitle><date>2019-12-18</date><risdate>2019</risdate><volume>141</volume><issue>50</issue><spage>19655</spage><epage>19668</epage><pages>19655-19668</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Rh-based catalysts have shown promise for the direct conversion of syngas to higher oxygenates. Although improvements in higher oxygenate yield have been achieved by combining Rh with metal oxide promoters, details of the structure of the promoted catalyst and the role of the promoter in enhancing catalytic performance are not well understood. In this work, we show that MoO
-promoted Rh nanoparticles form a novel catalyst structure in which Mo substitutes into the Rh surface, leading to both a 66-fold increase in turnover frequency and an enhancement in oxygenate yield. By applying a combination of atomically controlled synthesis, in situ characterization, and theoretical calculations, we gain an understanding of the promoter-Rh interactions that govern catalytic performance for MoO
-promoted Rh. We use atomic layer deposition to modify Rh nanoparticles with monolayer-precise amounts of MoO
, with a high degree of control over the structure of the catalyst. Through in situ X-ray absorption spectroscopy, we find that the atomic structure of the catalytic surface under reaction conditions consists of Mo-OH species substituted into the surface of the Rh nanoparticles. Using density functional theory calculations, we identify two roles of MoO
: first, the presence of Mo-OH in the catalyst surface enhances CO dissociation and also stabilizes a methanol synthesis pathway not present in the unpromoted catalyst; and second, hydrogen spillover from Mo-OH sites to adsorbed species on the Rh surface enhances hydrogenation rates of reaction intermediates.</abstract><cop>United States</cop><pmid>31724857</pmid><doi>10.1021/jacs.9b07460</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5249-2121</orcidid><orcidid>https://orcid.org/0000-0002-7682-4108</orcidid><orcidid>https://orcid.org/0000-0001-6390-0370</orcidid><orcidid>https://orcid.org/0000-0002-1911-074X</orcidid><orcidid>https://orcid.org/0000-0002-4932-0342</orcidid><orcidid>https://orcid.org/0000-0003-0333-6784</orcidid><orcidid>https://orcid.org/0000-0002-1084-5336</orcidid><orcidid>https://orcid.org/0000-0002-6508-4896</orcidid><orcidid>https://orcid.org/0000-0002-4625-9806</orcidid><orcidid>https://orcid.org/0000-0003-2126-5422</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2019-12, Vol.141 (50), p.19655-19668 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jacs_9b07460 |
source | American Chemical Society Publications |
title | Understanding Structure-Property Relationships of MoO 3 -Promoted Rh Catalysts for Syngas Conversion to Alcohols |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Structure-Property%20Relationships%20of%20MoO%203%20-Promoted%20Rh%20Catalysts%20for%20Syngas%20Conversion%20to%20Alcohols&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Asundi,%20Arun%20S&rft.date=2019-12-18&rft.volume=141&rft.issue=50&rft.spage=19655&rft.epage=19668&rft.pages=19655-19668&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b07460&rft_dat=%3Cpubmed_cross%3E31724857%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31724857&rfr_iscdi=true |