MoS 2 -OH Bilayer-Mediated Growth of Inch-Sized Monolayer MoS 2 on Arbitrary Substrates

Due to remarkable electronic property, optical transparency, and mechanical flexibility, monolayer molybdenum disulfide (MoS ) has been demonstrated to be promising for electronic and optoelectronic devices. To date, the growth of high-quality and large-scale monolayer MoS has been one of the main c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-04, Vol.141 (13), p.5392-5401
Hauptverfasser: Zhu, Juntong, Xu, Hao, Zou, Guifu, Zhang, Wan, Chai, Ruiqing, Choi, Jinho, Wu, Jiang, Liu, Huiyun, Shen, Guozhen, Fan, Hongyou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5401
container_issue 13
container_start_page 5392
container_title Journal of the American Chemical Society
container_volume 141
creator Zhu, Juntong
Xu, Hao
Zou, Guifu
Zhang, Wan
Chai, Ruiqing
Choi, Jinho
Wu, Jiang
Liu, Huiyun
Shen, Guozhen
Fan, Hongyou
description Due to remarkable electronic property, optical transparency, and mechanical flexibility, monolayer molybdenum disulfide (MoS ) has been demonstrated to be promising for electronic and optoelectronic devices. To date, the growth of high-quality and large-scale monolayer MoS has been one of the main challenges for practical applications. Here we present a MoS -OH bilayer-mediated method that can fabricate inch-sized monolayer MoS on arbitrary substrates. This approach relies on a layer of hydroxide groups (-OH) that are preferentially attached to the (001) surface of MoS to form a MoS -OH bilayer structure for growth of large-area monolayer MoS during the growth process. Specifically, the hydroxide layer impedes vertical growth of MoS layers along the [001] zone axis, promoting the monolayer growth of MoS , constrains growth of the MoS monolayer only in the lateral direction into larger area, and effectively reduces sulfur vacancies and defects according to density functional theory calculations. Finally, the hydroxide groups advantageously prevent the MoS from interface oxidation in air, rendering high-quality MoS monolayers with carrier mobility up to ∼30 cm V s . Using this approach, inch-sized uniform monolayer MoS has been fabricated on the sapphire and mica and high-quality monolayer MoS of single-crystalline domains exceeding 200 μm has been grown on various substrates including amorphous SiO and quartz and crystalline Si, SiC, Si N , and graphene This method provides a new opportunity for the monolayer growth of other two-dimensional transition metal dichalcogenides such as WS and MoSe .
doi_str_mv 10.1021/jacs.9b00047
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jacs_9b00047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30848896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-952481c1e2bba36156f10a427d17a9e349078d387e4ca0287df7cce2cb9bfad43</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujEURvnk1_gMVO2912j0gQSCAc0Hjc9GvDEqCkXWLw17sIeprJm-edTB6EHoH2gTJ4WWub-oWhlAp5hbqQMUoyYPk16rYZI1LlvIPuUlqfEKbgFnU4VUKpIu-iz3lYYobJYoJf640--kjm3tW68Q6PY_hqVjhUeLqzK7Ksv9twHnbhl8PnZtjhQTR1E3U84uXBpHZrfLpHN5XeJP9wmT308TZ6H07IbDGeDgczYkHyhhQZEwoseGaM5jlkeQVUCyYdSF14LgoqleNKemE1ZUq6SlrrmTWFqbQTvIeez3dtDClFX5X7WG_bX0qg5clPefJTXvy0-NMZ3x_M1rt_-E8I_wEl12Ak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MoS 2 -OH Bilayer-Mediated Growth of Inch-Sized Monolayer MoS 2 on Arbitrary Substrates</title><source>American Chemical Society Journals</source><creator>Zhu, Juntong ; Xu, Hao ; Zou, Guifu ; Zhang, Wan ; Chai, Ruiqing ; Choi, Jinho ; Wu, Jiang ; Liu, Huiyun ; Shen, Guozhen ; Fan, Hongyou</creator><creatorcontrib>Zhu, Juntong ; Xu, Hao ; Zou, Guifu ; Zhang, Wan ; Chai, Ruiqing ; Choi, Jinho ; Wu, Jiang ; Liu, Huiyun ; Shen, Guozhen ; Fan, Hongyou</creatorcontrib><description>Due to remarkable electronic property, optical transparency, and mechanical flexibility, monolayer molybdenum disulfide (MoS ) has been demonstrated to be promising for electronic and optoelectronic devices. To date, the growth of high-quality and large-scale monolayer MoS has been one of the main challenges for practical applications. Here we present a MoS -OH bilayer-mediated method that can fabricate inch-sized monolayer MoS on arbitrary substrates. This approach relies on a layer of hydroxide groups (-OH) that are preferentially attached to the (001) surface of MoS to form a MoS -OH bilayer structure for growth of large-area monolayer MoS during the growth process. Specifically, the hydroxide layer impedes vertical growth of MoS layers along the [001] zone axis, promoting the monolayer growth of MoS , constrains growth of the MoS monolayer only in the lateral direction into larger area, and effectively reduces sulfur vacancies and defects according to density functional theory calculations. Finally, the hydroxide groups advantageously prevent the MoS from interface oxidation in air, rendering high-quality MoS monolayers with carrier mobility up to ∼30 cm V s . Using this approach, inch-sized uniform monolayer MoS has been fabricated on the sapphire and mica and high-quality monolayer MoS of single-crystalline domains exceeding 200 μm has been grown on various substrates including amorphous SiO and quartz and crystalline Si, SiC, Si N , and graphene This method provides a new opportunity for the monolayer growth of other two-dimensional transition metal dichalcogenides such as WS and MoSe .</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b00047</identifier><identifier>PMID: 30848896</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the American Chemical Society, 2019-04, Vol.141 (13), p.5392-5401</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c173t-952481c1e2bba36156f10a427d17a9e349078d387e4ca0287df7cce2cb9bfad43</citedby><cites>FETCH-LOGICAL-c173t-952481c1e2bba36156f10a427d17a9e349078d387e4ca0287df7cce2cb9bfad43</cites><orcidid>0000-0001-6174-4263 ; 0000-0002-9755-1647 ; 0000-0002-8342-7768 ; 0000-0001-6498-2929 ; 0000-0003-4323-2429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30848896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Juntong</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Zou, Guifu</creatorcontrib><creatorcontrib>Zhang, Wan</creatorcontrib><creatorcontrib>Chai, Ruiqing</creatorcontrib><creatorcontrib>Choi, Jinho</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Liu, Huiyun</creatorcontrib><creatorcontrib>Shen, Guozhen</creatorcontrib><creatorcontrib>Fan, Hongyou</creatorcontrib><title>MoS 2 -OH Bilayer-Mediated Growth of Inch-Sized Monolayer MoS 2 on Arbitrary Substrates</title><title>Journal of the American Chemical Society</title><addtitle>J Am Chem Soc</addtitle><description>Due to remarkable electronic property, optical transparency, and mechanical flexibility, monolayer molybdenum disulfide (MoS ) has been demonstrated to be promising for electronic and optoelectronic devices. To date, the growth of high-quality and large-scale monolayer MoS has been one of the main challenges for practical applications. Here we present a MoS -OH bilayer-mediated method that can fabricate inch-sized monolayer MoS on arbitrary substrates. This approach relies on a layer of hydroxide groups (-OH) that are preferentially attached to the (001) surface of MoS to form a MoS -OH bilayer structure for growth of large-area monolayer MoS during the growth process. Specifically, the hydroxide layer impedes vertical growth of MoS layers along the [001] zone axis, promoting the monolayer growth of MoS , constrains growth of the MoS monolayer only in the lateral direction into larger area, and effectively reduces sulfur vacancies and defects according to density functional theory calculations. Finally, the hydroxide groups advantageously prevent the MoS from interface oxidation in air, rendering high-quality MoS monolayers with carrier mobility up to ∼30 cm V s . Using this approach, inch-sized uniform monolayer MoS has been fabricated on the sapphire and mica and high-quality monolayer MoS of single-crystalline domains exceeding 200 μm has been grown on various substrates including amorphous SiO and quartz and crystalline Si, SiC, Si N , and graphene This method provides a new opportunity for the monolayer growth of other two-dimensional transition metal dichalcogenides such as WS and MoSe .</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujEURvnk1_gMVO2912j0gQSCAc0Hjc9GvDEqCkXWLw17sIeprJm-edTB6EHoH2gTJ4WWub-oWhlAp5hbqQMUoyYPk16rYZI1LlvIPuUlqfEKbgFnU4VUKpIu-iz3lYYobJYoJf640--kjm3tW68Q6PY_hqVjhUeLqzK7Ksv9twHnbhl8PnZtjhQTR1E3U84uXBpHZrfLpHN5XeJP9wmT308TZ6H07IbDGeDgczYkHyhhQZEwoseGaM5jlkeQVUCyYdSF14LgoqleNKemE1ZUq6SlrrmTWFqbQTvIeez3dtDClFX5X7WG_bX0qg5clPefJTXvy0-NMZ3x_M1rt_-E8I_wEl12Ak</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Zhu, Juntong</creator><creator>Xu, Hao</creator><creator>Zou, Guifu</creator><creator>Zhang, Wan</creator><creator>Chai, Ruiqing</creator><creator>Choi, Jinho</creator><creator>Wu, Jiang</creator><creator>Liu, Huiyun</creator><creator>Shen, Guozhen</creator><creator>Fan, Hongyou</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6174-4263</orcidid><orcidid>https://orcid.org/0000-0002-9755-1647</orcidid><orcidid>https://orcid.org/0000-0002-8342-7768</orcidid><orcidid>https://orcid.org/0000-0001-6498-2929</orcidid><orcidid>https://orcid.org/0000-0003-4323-2429</orcidid></search><sort><creationdate>20190403</creationdate><title>MoS 2 -OH Bilayer-Mediated Growth of Inch-Sized Monolayer MoS 2 on Arbitrary Substrates</title><author>Zhu, Juntong ; Xu, Hao ; Zou, Guifu ; Zhang, Wan ; Chai, Ruiqing ; Choi, Jinho ; Wu, Jiang ; Liu, Huiyun ; Shen, Guozhen ; Fan, Hongyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-952481c1e2bba36156f10a427d17a9e349078d387e4ca0287df7cce2cb9bfad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Juntong</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Zou, Guifu</creatorcontrib><creatorcontrib>Zhang, Wan</creatorcontrib><creatorcontrib>Chai, Ruiqing</creatorcontrib><creatorcontrib>Choi, Jinho</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Liu, Huiyun</creatorcontrib><creatorcontrib>Shen, Guozhen</creatorcontrib><creatorcontrib>Fan, Hongyou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Juntong</au><au>Xu, Hao</au><au>Zou, Guifu</au><au>Zhang, Wan</au><au>Chai, Ruiqing</au><au>Choi, Jinho</au><au>Wu, Jiang</au><au>Liu, Huiyun</au><au>Shen, Guozhen</au><au>Fan, Hongyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoS 2 -OH Bilayer-Mediated Growth of Inch-Sized Monolayer MoS 2 on Arbitrary Substrates</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J Am Chem Soc</addtitle><date>2019-04-03</date><risdate>2019</risdate><volume>141</volume><issue>13</issue><spage>5392</spage><epage>5401</epage><pages>5392-5401</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Due to remarkable electronic property, optical transparency, and mechanical flexibility, monolayer molybdenum disulfide (MoS ) has been demonstrated to be promising for electronic and optoelectronic devices. To date, the growth of high-quality and large-scale monolayer MoS has been one of the main challenges for practical applications. Here we present a MoS -OH bilayer-mediated method that can fabricate inch-sized monolayer MoS on arbitrary substrates. This approach relies on a layer of hydroxide groups (-OH) that are preferentially attached to the (001) surface of MoS to form a MoS -OH bilayer structure for growth of large-area monolayer MoS during the growth process. Specifically, the hydroxide layer impedes vertical growth of MoS layers along the [001] zone axis, promoting the monolayer growth of MoS , constrains growth of the MoS monolayer only in the lateral direction into larger area, and effectively reduces sulfur vacancies and defects according to density functional theory calculations. Finally, the hydroxide groups advantageously prevent the MoS from interface oxidation in air, rendering high-quality MoS monolayers with carrier mobility up to ∼30 cm V s . Using this approach, inch-sized uniform monolayer MoS has been fabricated on the sapphire and mica and high-quality monolayer MoS of single-crystalline domains exceeding 200 μm has been grown on various substrates including amorphous SiO and quartz and crystalline Si, SiC, Si N , and graphene This method provides a new opportunity for the monolayer growth of other two-dimensional transition metal dichalcogenides such as WS and MoSe .</abstract><cop>United States</cop><pmid>30848896</pmid><doi>10.1021/jacs.9b00047</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6174-4263</orcidid><orcidid>https://orcid.org/0000-0002-9755-1647</orcidid><orcidid>https://orcid.org/0000-0002-8342-7768</orcidid><orcidid>https://orcid.org/0000-0001-6498-2929</orcidid><orcidid>https://orcid.org/0000-0003-4323-2429</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2019-04, Vol.141 (13), p.5392-5401
issn 0002-7863
1520-5126
language eng
recordid cdi_crossref_primary_10_1021_jacs_9b00047
source American Chemical Society Journals
title MoS 2 -OH Bilayer-Mediated Growth of Inch-Sized Monolayer MoS 2 on Arbitrary Substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoS%202%20-OH%20Bilayer-Mediated%20Growth%20of%20Inch-Sized%20Monolayer%20MoS%202%20on%20Arbitrary%20Substrates&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhu,%20Juntong&rft.date=2019-04-03&rft.volume=141&rft.issue=13&rft.spage=5392&rft.epage=5401&rft.pages=5392-5401&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b00047&rft_dat=%3Cpubmed_cross%3E30848896%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30848896&rfr_iscdi=true