Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study

Carbon–hydrogen bond activation of alkanes by Tp′Rh­(CNR) (Tp′ = Tp = trispyrazolylborate or Tp* = tris­(3,5-dimethylpyrazolyl)­borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ­(CNR) and υ­(B−H) spectral regions on Tp*Rh­(CNCH2CMe3), and their reaction mechanisms were mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-02, Vol.140 (5), p.1842-1854
Hauptverfasser: Guan, Jia, Wriglesworth, Alisdair, Sun, Xue Zhong, Brothers, Edward N, Zarić, Snežana D, Evans, Meagan E, Jones, William D, Towrie, Michael, Hall, Michael B, George, Michael W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1854
container_issue 5
container_start_page 1842
container_title Journal of the American Chemical Society
container_volume 140
creator Guan, Jia
Wriglesworth, Alisdair
Sun, Xue Zhong
Brothers, Edward N
Zarić, Snežana D
Evans, Meagan E
Jones, William D
Towrie, Michael
Hall, Michael B
George, Michael W
description Carbon–hydrogen bond activation of alkanes by Tp′Rh­(CNR) (Tp′ = Tp = trispyrazolylborate or Tp* = tris­(3,5-dimethylpyrazolyl)­borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ­(CNR) and υ­(B−H) spectral regions on Tp*Rh­(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh­(CNMe). The major intermediate species were: κ3-η1-alkane complex (1); κ2-η2-alkane complex (2); and κ3-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C–H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh­(CNR) and Tp*Rh­(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh­(CO) and Cp*Rh­(CO) fragments and is attributed to the wider difference in C–H bonds that appear at C7H14. However, Tp′Rh­(CNR) and Tp′Rh­(CO) fragments have much longer absolute lifetimes compared to those of CpRh­(CO) and Cp*Rh­(CO) fragments, because the reduced electron density in dechelated κ2-η2-alkane Tp′ complexes stabilizes the d 8 Rh­(I) in a square-planar geometry and weakens the metal′s ability for oxidative addition of the C–H bond. Further, the Tp′Rh­(CNR) fragment has significantly slower rates of C–H activation in comparison to the Tp′Rh­(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ2-Tp′Rh­(CNR)­(cycloalkane) species and results in the C–H activation without the assistance of the rechelation.
doi_str_mv 10.1021/jacs.7b12152
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jacs_7b12152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b818624637</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2212-ceb877201939cc807876b6668f3bf396e9d2f894a5b0c38b99836994ca77b3de3</originalsourceid><addsrcrecordid>eNptUN1OwjAYbYwmInrnA_QSEodtB1vrHVlESIgSwOul7ToobuvSDgx3vIPv4AP4SDyJm3Dpzfd7zvnyHQDuMephRPDjhkvXCwUmeEAuQKuOyBtgElyCFkKIeCEN_Gtw49ymbvuE4hb4nlkjdLGC1VrBiFthiuPha7xPrFmpAg5lpXe80qaAJoXD7IMXysGRyTLz2bBma1OZbO-0a_bL8nj4ma870eu825GNWKJ1rhPVfYJDGJm83FZ_YjyDvEjgUufKmytnsp1K4KRILbd1sSiVrKxx0pRawkW1Tfa34CrlmVN359wG76PnZTT2pm8vk2g49TghmHhSCRqGBGHmMykpCmkYiCAIaOqL1GeBYglJKevzgUDSp4Ix6geM9SUPQ-Enym-Dh5OurO87q9K4tDrndh9jFDcex43H8dnjGt45wZvhxmxt_Zn7H_oLb16BQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study</title><source>ACS Publications</source><creator>Guan, Jia ; Wriglesworth, Alisdair ; Sun, Xue Zhong ; Brothers, Edward N ; Zarić, Snežana D ; Evans, Meagan E ; Jones, William D ; Towrie, Michael ; Hall, Michael B ; George, Michael W</creator><creatorcontrib>Guan, Jia ; Wriglesworth, Alisdair ; Sun, Xue Zhong ; Brothers, Edward N ; Zarić, Snežana D ; Evans, Meagan E ; Jones, William D ; Towrie, Michael ; Hall, Michael B ; George, Michael W</creatorcontrib><description>Carbon–hydrogen bond activation of alkanes by Tp′Rh­(CNR) (Tp′ = Tp = trispyrazolylborate or Tp* = tris­(3,5-dimethylpyrazolyl)­borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ­(CNR) and υ­(B−H) spectral regions on Tp*Rh­(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh­(CNMe). The major intermediate species were: κ3-η1-alkane complex (1); κ2-η2-alkane complex (2); and κ3-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C–H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh­(CNR) and Tp*Rh­(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh­(CO) and Cp*Rh­(CO) fragments and is attributed to the wider difference in C–H bonds that appear at C7H14. However, Tp′Rh­(CNR) and Tp′Rh­(CO) fragments have much longer absolute lifetimes compared to those of CpRh­(CO) and Cp*Rh­(CO) fragments, because the reduced electron density in dechelated κ2-η2-alkane Tp′ complexes stabilizes the d 8 Rh­(I) in a square-planar geometry and weakens the metal′s ability for oxidative addition of the C–H bond. Further, the Tp′Rh­(CNR) fragment has significantly slower rates of C–H activation in comparison to the Tp′Rh­(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ2-Tp′Rh­(CNR)­(cycloalkane) species and results in the C–H activation without the assistance of the rechelation.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b12152</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2018-02, Vol.140 (5), p.1842-1854</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2212-ceb877201939cc807876b6668f3bf396e9d2f894a5b0c38b99836994ca77b3de3</citedby><cites>FETCH-LOGICAL-a2212-ceb877201939cc807876b6668f3bf396e9d2f894a5b0c38b99836994ca77b3de3</cites><orcidid>0000-0003-1932-0963 ; 0000-0003-3263-3219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b12152$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b12152$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Guan, Jia</creatorcontrib><creatorcontrib>Wriglesworth, Alisdair</creatorcontrib><creatorcontrib>Sun, Xue Zhong</creatorcontrib><creatorcontrib>Brothers, Edward N</creatorcontrib><creatorcontrib>Zarić, Snežana D</creatorcontrib><creatorcontrib>Evans, Meagan E</creatorcontrib><creatorcontrib>Jones, William D</creatorcontrib><creatorcontrib>Towrie, Michael</creatorcontrib><creatorcontrib>Hall, Michael B</creatorcontrib><creatorcontrib>George, Michael W</creatorcontrib><title>Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Carbon–hydrogen bond activation of alkanes by Tp′Rh­(CNR) (Tp′ = Tp = trispyrazolylborate or Tp* = tris­(3,5-dimethylpyrazolyl)­borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ­(CNR) and υ­(B−H) spectral regions on Tp*Rh­(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh­(CNMe). The major intermediate species were: κ3-η1-alkane complex (1); κ2-η2-alkane complex (2); and κ3-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C–H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh­(CNR) and Tp*Rh­(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh­(CO) and Cp*Rh­(CO) fragments and is attributed to the wider difference in C–H bonds that appear at C7H14. However, Tp′Rh­(CNR) and Tp′Rh­(CO) fragments have much longer absolute lifetimes compared to those of CpRh­(CO) and Cp*Rh­(CO) fragments, because the reduced electron density in dechelated κ2-η2-alkane Tp′ complexes stabilizes the d 8 Rh­(I) in a square-planar geometry and weakens the metal′s ability for oxidative addition of the C–H bond. Further, the Tp′Rh­(CNR) fragment has significantly slower rates of C–H activation in comparison to the Tp′Rh­(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ2-Tp′Rh­(CNR)­(cycloalkane) species and results in the C–H activation without the assistance of the rechelation.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptUN1OwjAYbYwmInrnA_QSEodtB1vrHVlESIgSwOul7ToobuvSDgx3vIPv4AP4SDyJm3Dpzfd7zvnyHQDuMephRPDjhkvXCwUmeEAuQKuOyBtgElyCFkKIeCEN_Gtw49ymbvuE4hb4nlkjdLGC1VrBiFthiuPha7xPrFmpAg5lpXe80qaAJoXD7IMXysGRyTLz2bBma1OZbO-0a_bL8nj4ma870eu825GNWKJ1rhPVfYJDGJm83FZ_YjyDvEjgUufKmytnsp1K4KRILbd1sSiVrKxx0pRawkW1Tfa34CrlmVN359wG76PnZTT2pm8vk2g49TghmHhSCRqGBGHmMykpCmkYiCAIaOqL1GeBYglJKevzgUDSp4Ix6geM9SUPQ-Enym-Dh5OurO87q9K4tDrndh9jFDcex43H8dnjGt45wZvhxmxt_Zn7H_oLb16BQQ</recordid><startdate>20180207</startdate><enddate>20180207</enddate><creator>Guan, Jia</creator><creator>Wriglesworth, Alisdair</creator><creator>Sun, Xue Zhong</creator><creator>Brothers, Edward N</creator><creator>Zarić, Snežana D</creator><creator>Evans, Meagan E</creator><creator>Jones, William D</creator><creator>Towrie, Michael</creator><creator>Hall, Michael B</creator><creator>George, Michael W</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1932-0963</orcidid><orcidid>https://orcid.org/0000-0003-3263-3219</orcidid></search><sort><creationdate>20180207</creationdate><title>Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study</title><author>Guan, Jia ; Wriglesworth, Alisdair ; Sun, Xue Zhong ; Brothers, Edward N ; Zarić, Snežana D ; Evans, Meagan E ; Jones, William D ; Towrie, Michael ; Hall, Michael B ; George, Michael W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2212-ceb877201939cc807876b6668f3bf396e9d2f894a5b0c38b99836994ca77b3de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Jia</creatorcontrib><creatorcontrib>Wriglesworth, Alisdair</creatorcontrib><creatorcontrib>Sun, Xue Zhong</creatorcontrib><creatorcontrib>Brothers, Edward N</creatorcontrib><creatorcontrib>Zarić, Snežana D</creatorcontrib><creatorcontrib>Evans, Meagan E</creatorcontrib><creatorcontrib>Jones, William D</creatorcontrib><creatorcontrib>Towrie, Michael</creatorcontrib><creatorcontrib>Hall, Michael B</creatorcontrib><creatorcontrib>George, Michael W</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Jia</au><au>Wriglesworth, Alisdair</au><au>Sun, Xue Zhong</au><au>Brothers, Edward N</au><au>Zarić, Snežana D</au><au>Evans, Meagan E</au><au>Jones, William D</au><au>Towrie, Michael</au><au>Hall, Michael B</au><au>George, Michael W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-02-07</date><risdate>2018</risdate><volume>140</volume><issue>5</issue><spage>1842</spage><epage>1854</epage><pages>1842-1854</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Carbon–hydrogen bond activation of alkanes by Tp′Rh­(CNR) (Tp′ = Tp = trispyrazolylborate or Tp* = tris­(3,5-dimethylpyrazolyl)­borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ­(CNR) and υ­(B−H) spectral regions on Tp*Rh­(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh­(CNMe). The major intermediate species were: κ3-η1-alkane complex (1); κ2-η2-alkane complex (2); and κ3-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C–H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh­(CNR) and Tp*Rh­(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh­(CO) and Cp*Rh­(CO) fragments and is attributed to the wider difference in C–H bonds that appear at C7H14. However, Tp′Rh­(CNR) and Tp′Rh­(CO) fragments have much longer absolute lifetimes compared to those of CpRh­(CO) and Cp*Rh­(CO) fragments, because the reduced electron density in dechelated κ2-η2-alkane Tp′ complexes stabilizes the d 8 Rh­(I) in a square-planar geometry and weakens the metal′s ability for oxidative addition of the C–H bond. Further, the Tp′Rh­(CNR) fragment has significantly slower rates of C–H activation in comparison to the Tp′Rh­(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ2-Tp′Rh­(CNR)­(cycloalkane) species and results in the C–H activation without the assistance of the rechelation.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.7b12152</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1932-0963</orcidid><orcidid>https://orcid.org/0000-0003-3263-3219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-02, Vol.140 (5), p.1842-1854
issn 0002-7863
1520-5126
language eng
recordid cdi_crossref_primary_10_1021_jacs_7b12152
source ACS Publications
title Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Carbon%E2%80%93Hydrogen%20Activation%20of%20Alkanes%20Following%20Photolysis%20of%20Tp%E2%80%B2Rh(CNR)(carbodiimide):%20A%20Computational%20and%20Time-Resolved%20Infrared%20Spectroscopic%20Study&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Guan,%20Jia&rft.date=2018-02-07&rft.volume=140&rft.issue=5&rft.spage=1842&rft.epage=1854&rft.pages=1842-1854&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b12152&rft_dat=%3Cacs_cross%3Eb818624637%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true