Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study
Carbon–hydrogen bond activation of alkanes by Tp′Rh(CNR) (Tp′ = Tp = trispyrazolylborate or Tp* = tris(3,5-dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ(CNR) and υ(B−H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were mod...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2018-02, Vol.140 (5), p.1842-1854 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1854 |
---|---|
container_issue | 5 |
container_start_page | 1842 |
container_title | Journal of the American Chemical Society |
container_volume | 140 |
creator | Guan, Jia Wriglesworth, Alisdair Sun, Xue Zhong Brothers, Edward N Zarić, Snežana D Evans, Meagan E Jones, William D Towrie, Michael Hall, Michael B George, Michael W |
description | Carbon–hydrogen bond activation of alkanes by Tp′Rh(CNR) (Tp′ = Tp = trispyrazolylborate or Tp* = tris(3,5-dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ(CNR) and υ(B−H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: κ3-η1-alkane complex (1); κ2-η2-alkane complex (2); and κ3-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C–H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C–H bonds that appear at C7H14. However, Tp′Rh(CNR) and Tp′Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated κ2-η2-alkane Tp′ complexes stabilizes the d 8 Rh(I) in a square-planar geometry and weakens the metal′s ability for oxidative addition of the C–H bond. Further, the Tp′Rh(CNR) fragment has significantly slower rates of C–H activation in comparison to the Tp′Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ2-Tp′Rh(CNR)(cycloalkane) species and results in the C–H activation without the assistance of the rechelation. |
doi_str_mv | 10.1021/jacs.7b12152 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jacs_7b12152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b818624637</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2212-ceb877201939cc807876b6668f3bf396e9d2f894a5b0c38b99836994ca77b3de3</originalsourceid><addsrcrecordid>eNptUN1OwjAYbYwmInrnA_QSEodtB1vrHVlESIgSwOul7ToobuvSDgx3vIPv4AP4SDyJm3Dpzfd7zvnyHQDuMephRPDjhkvXCwUmeEAuQKuOyBtgElyCFkKIeCEN_Gtw49ymbvuE4hb4nlkjdLGC1VrBiFthiuPha7xPrFmpAg5lpXe80qaAJoXD7IMXysGRyTLz2bBma1OZbO-0a_bL8nj4ma870eu825GNWKJ1rhPVfYJDGJm83FZ_YjyDvEjgUufKmytnsp1K4KRILbd1sSiVrKxx0pRawkW1Tfa34CrlmVN359wG76PnZTT2pm8vk2g49TghmHhSCRqGBGHmMykpCmkYiCAIaOqL1GeBYglJKevzgUDSp4Ix6geM9SUPQ-Enym-Dh5OurO87q9K4tDrndh9jFDcex43H8dnjGt45wZvhxmxt_Zn7H_oLb16BQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study</title><source>ACS Publications</source><creator>Guan, Jia ; Wriglesworth, Alisdair ; Sun, Xue Zhong ; Brothers, Edward N ; Zarić, Snežana D ; Evans, Meagan E ; Jones, William D ; Towrie, Michael ; Hall, Michael B ; George, Michael W</creator><creatorcontrib>Guan, Jia ; Wriglesworth, Alisdair ; Sun, Xue Zhong ; Brothers, Edward N ; Zarić, Snežana D ; Evans, Meagan E ; Jones, William D ; Towrie, Michael ; Hall, Michael B ; George, Michael W</creatorcontrib><description>Carbon–hydrogen bond activation of alkanes by Tp′Rh(CNR) (Tp′ = Tp = trispyrazolylborate or Tp* = tris(3,5-dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ(CNR) and υ(B−H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: κ3-η1-alkane complex (1); κ2-η2-alkane complex (2); and κ3-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C–H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C–H bonds that appear at C7H14. However, Tp′Rh(CNR) and Tp′Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated κ2-η2-alkane Tp′ complexes stabilizes the d 8 Rh(I) in a square-planar geometry and weakens the metal′s ability for oxidative addition of the C–H bond. Further, the Tp′Rh(CNR) fragment has significantly slower rates of C–H activation in comparison to the Tp′Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ2-Tp′Rh(CNR)(cycloalkane) species and results in the C–H activation without the assistance of the rechelation.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b12152</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2018-02, Vol.140 (5), p.1842-1854</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2212-ceb877201939cc807876b6668f3bf396e9d2f894a5b0c38b99836994ca77b3de3</citedby><cites>FETCH-LOGICAL-a2212-ceb877201939cc807876b6668f3bf396e9d2f894a5b0c38b99836994ca77b3de3</cites><orcidid>0000-0003-1932-0963 ; 0000-0003-3263-3219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b12152$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b12152$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Guan, Jia</creatorcontrib><creatorcontrib>Wriglesworth, Alisdair</creatorcontrib><creatorcontrib>Sun, Xue Zhong</creatorcontrib><creatorcontrib>Brothers, Edward N</creatorcontrib><creatorcontrib>Zarić, Snežana D</creatorcontrib><creatorcontrib>Evans, Meagan E</creatorcontrib><creatorcontrib>Jones, William D</creatorcontrib><creatorcontrib>Towrie, Michael</creatorcontrib><creatorcontrib>Hall, Michael B</creatorcontrib><creatorcontrib>George, Michael W</creatorcontrib><title>Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Carbon–hydrogen bond activation of alkanes by Tp′Rh(CNR) (Tp′ = Tp = trispyrazolylborate or Tp* = tris(3,5-dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ(CNR) and υ(B−H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: κ3-η1-alkane complex (1); κ2-η2-alkane complex (2); and κ3-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C–H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C–H bonds that appear at C7H14. However, Tp′Rh(CNR) and Tp′Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated κ2-η2-alkane Tp′ complexes stabilizes the d 8 Rh(I) in a square-planar geometry and weakens the metal′s ability for oxidative addition of the C–H bond. Further, the Tp′Rh(CNR) fragment has significantly slower rates of C–H activation in comparison to the Tp′Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ2-Tp′Rh(CNR)(cycloalkane) species and results in the C–H activation without the assistance of the rechelation.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptUN1OwjAYbYwmInrnA_QSEodtB1vrHVlESIgSwOul7ToobuvSDgx3vIPv4AP4SDyJm3Dpzfd7zvnyHQDuMephRPDjhkvXCwUmeEAuQKuOyBtgElyCFkKIeCEN_Gtw49ymbvuE4hb4nlkjdLGC1VrBiFthiuPha7xPrFmpAg5lpXe80qaAJoXD7IMXysGRyTLz2bBma1OZbO-0a_bL8nj4ma870eu825GNWKJ1rhPVfYJDGJm83FZ_YjyDvEjgUufKmytnsp1K4KRILbd1sSiVrKxx0pRawkW1Tfa34CrlmVN359wG76PnZTT2pm8vk2g49TghmHhSCRqGBGHmMykpCmkYiCAIaOqL1GeBYglJKevzgUDSp4Ix6geM9SUPQ-Enym-Dh5OurO87q9K4tDrndh9jFDcex43H8dnjGt45wZvhxmxt_Zn7H_oLb16BQQ</recordid><startdate>20180207</startdate><enddate>20180207</enddate><creator>Guan, Jia</creator><creator>Wriglesworth, Alisdair</creator><creator>Sun, Xue Zhong</creator><creator>Brothers, Edward N</creator><creator>Zarić, Snežana D</creator><creator>Evans, Meagan E</creator><creator>Jones, William D</creator><creator>Towrie, Michael</creator><creator>Hall, Michael B</creator><creator>George, Michael W</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1932-0963</orcidid><orcidid>https://orcid.org/0000-0003-3263-3219</orcidid></search><sort><creationdate>20180207</creationdate><title>Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study</title><author>Guan, Jia ; Wriglesworth, Alisdair ; Sun, Xue Zhong ; Brothers, Edward N ; Zarić, Snežana D ; Evans, Meagan E ; Jones, William D ; Towrie, Michael ; Hall, Michael B ; George, Michael W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2212-ceb877201939cc807876b6668f3bf396e9d2f894a5b0c38b99836994ca77b3de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Jia</creatorcontrib><creatorcontrib>Wriglesworth, Alisdair</creatorcontrib><creatorcontrib>Sun, Xue Zhong</creatorcontrib><creatorcontrib>Brothers, Edward N</creatorcontrib><creatorcontrib>Zarić, Snežana D</creatorcontrib><creatorcontrib>Evans, Meagan E</creatorcontrib><creatorcontrib>Jones, William D</creatorcontrib><creatorcontrib>Towrie, Michael</creatorcontrib><creatorcontrib>Hall, Michael B</creatorcontrib><creatorcontrib>George, Michael W</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Jia</au><au>Wriglesworth, Alisdair</au><au>Sun, Xue Zhong</au><au>Brothers, Edward N</au><au>Zarić, Snežana D</au><au>Evans, Meagan E</au><au>Jones, William D</au><au>Towrie, Michael</au><au>Hall, Michael B</au><au>George, Michael W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-02-07</date><risdate>2018</risdate><volume>140</volume><issue>5</issue><spage>1842</spage><epage>1854</epage><pages>1842-1854</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Carbon–hydrogen bond activation of alkanes by Tp′Rh(CNR) (Tp′ = Tp = trispyrazolylborate or Tp* = tris(3,5-dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ(CNR) and υ(B−H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: κ3-η1-alkane complex (1); κ2-η2-alkane complex (2); and κ3-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C–H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C–H bonds that appear at C7H14. However, Tp′Rh(CNR) and Tp′Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated κ2-η2-alkane Tp′ complexes stabilizes the d 8 Rh(I) in a square-planar geometry and weakens the metal′s ability for oxidative addition of the C–H bond. Further, the Tp′Rh(CNR) fragment has significantly slower rates of C–H activation in comparison to the Tp′Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ2-Tp′Rh(CNR)(cycloalkane) species and results in the C–H activation without the assistance of the rechelation.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.7b12152</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1932-0963</orcidid><orcidid>https://orcid.org/0000-0003-3263-3219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2018-02, Vol.140 (5), p.1842-1854 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jacs_7b12152 |
source | ACS Publications |
title | Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Carbon%E2%80%93Hydrogen%20Activation%20of%20Alkanes%20Following%20Photolysis%20of%20Tp%E2%80%B2Rh(CNR)(carbodiimide):%20A%20Computational%20and%20Time-Resolved%20Infrared%20Spectroscopic%20Study&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Guan,%20Jia&rft.date=2018-02-07&rft.volume=140&rft.issue=5&rft.spage=1842&rft.epage=1854&rft.pages=1842-1854&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b12152&rft_dat=%3Cacs_cross%3Eb818624637%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |