Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe
We report enhanced thermoelectric performance in SnTe, where significantly improved electrical transport properties and reduced thermal conductivity were achieved simultaneously. The former was obtained from a larger hole Seebeck coefficient through Fermi level tuning by optimizing the carrier conce...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2016-02, Vol.138 (7), p.2366-2373 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2373 |
---|---|
container_issue | 7 |
container_start_page | 2366 |
container_title | Journal of the American Chemical Society |
container_volume | 138 |
creator | Zhao, Li-Dong Zhang, Xiao Wu, Haijun Tan, Gangjian Pei, Yanling Xiao, Yu Chang, Cheng Wu, Di Chi, Hang Zheng, Lei Gong, Shengkai Uher, Ctirad He, Jiaqing Kanatzidis, Mercouri G |
description | We report enhanced thermoelectric performance in SnTe, where significantly improved electrical transport properties and reduced thermal conductivity were achieved simultaneously. The former was obtained from a larger hole Seebeck coefficient through Fermi level tuning by optimizing the carrier concentration with Ga, In, Bi, and Sb dopants, resulting in a power factor of 21 μW cm–1 K–2 and ZT of 0.9 at 823 K in Sn0.97Bi0.03Te. To reduce the lattice thermal conductivity without deteriorating the hole carrier mobility in Sn0.97Bi0.03Te, SrTe was chosen as the second phase to create strained endotaxial nanostructures as phonon scattering centers. As a result, the lattice thermal conductivity decreases strongly from ∼2.0 Wm–1 K–1 for Sn0.97Bi0.03Te to ∼1.2 Wm–1 K–1 as the SrTe content is increased from 0 to 5.0% at room temperature and from ∼1.1 to ∼0.70 Wm–1 K–1 at 823 K. For the Sn0.97Bi0.03Te-3% SrTe sample, this leads to a ZT of 1.2 at 823 K and a high average ZT (for SnTe) of 0.7 in the temperature range of 300–823 K, suggesting that SnTe is a robust candidate for medium-temperature thermoelectric applications. |
doi_str_mv | 10.1021/jacs.5b13276 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jacs_5b13276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c255036633</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-21c46aae8a80b21c4728ada05d9a82a7cd9e30d30598c793db2ac4321d235e383</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRbK3ePMsePZi6H02yOUpbP6CgkHgOk90pSWk2ZXeL9t-b0OrJ0_Ayz7wMDyG3nE05E_xxA9pP44pLkSZnZMxjwaKYi-ScjBljIkpVIkfkyvtNH2dC8UsyEolKeZbEYwJLW4PVaGhRo2s73KIOrtH0w3U7dKFBTxtLQ4103u1tQBct-oWhuS2Q5gcfsKVfTahpHhw0tt8srekCfDewpbkr8JpcrGHr8eY0J-TzeVnMX6PV-8vb_GkVgUx4iATXswQAFShWDSEVCgyw2GSgBKTaZCiZkSzOlE4zaSoBeiYFN0LGKJWckIdjr3ad9w7X5c41LbhDyVk5mCoHU-XJVI_fHfHdvmrR_MG_anrg_ggMV5tu72z__f9dP-lIcmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe</title><source>ACS Publications</source><creator>Zhao, Li-Dong ; Zhang, Xiao ; Wu, Haijun ; Tan, Gangjian ; Pei, Yanling ; Xiao, Yu ; Chang, Cheng ; Wu, Di ; Chi, Hang ; Zheng, Lei ; Gong, Shengkai ; Uher, Ctirad ; He, Jiaqing ; Kanatzidis, Mercouri G</creator><creatorcontrib>Zhao, Li-Dong ; Zhang, Xiao ; Wu, Haijun ; Tan, Gangjian ; Pei, Yanling ; Xiao, Yu ; Chang, Cheng ; Wu, Di ; Chi, Hang ; Zheng, Lei ; Gong, Shengkai ; Uher, Ctirad ; He, Jiaqing ; Kanatzidis, Mercouri G</creatorcontrib><description>We report enhanced thermoelectric performance in SnTe, where significantly improved electrical transport properties and reduced thermal conductivity were achieved simultaneously. The former was obtained from a larger hole Seebeck coefficient through Fermi level tuning by optimizing the carrier concentration with Ga, In, Bi, and Sb dopants, resulting in a power factor of 21 μW cm–1 K–2 and ZT of 0.9 at 823 K in Sn0.97Bi0.03Te. To reduce the lattice thermal conductivity without deteriorating the hole carrier mobility in Sn0.97Bi0.03Te, SrTe was chosen as the second phase to create strained endotaxial nanostructures as phonon scattering centers. As a result, the lattice thermal conductivity decreases strongly from ∼2.0 Wm–1 K–1 for Sn0.97Bi0.03Te to ∼1.2 Wm–1 K–1 as the SrTe content is increased from 0 to 5.0% at room temperature and from ∼1.1 to ∼0.70 Wm–1 K–1 at 823 K. For the Sn0.97Bi0.03Te-3% SrTe sample, this leads to a ZT of 1.2 at 823 K and a high average ZT (for SnTe) of 0.7 in the temperature range of 300–823 K, suggesting that SnTe is a robust candidate for medium-temperature thermoelectric applications.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b13276</identifier><identifier>PMID: 26871965</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2016-02, Vol.138 (7), p.2366-2373</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-21c46aae8a80b21c4728ada05d9a82a7cd9e30d30598c793db2ac4321d235e383</citedby><cites>FETCH-LOGICAL-a361t-21c46aae8a80b21c4728ada05d9a82a7cd9e30d30598c793db2ac4321d235e383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b13276$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b13276$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26871965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Li-Dong</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Wu, Haijun</creatorcontrib><creatorcontrib>Tan, Gangjian</creatorcontrib><creatorcontrib>Pei, Yanling</creatorcontrib><creatorcontrib>Xiao, Yu</creatorcontrib><creatorcontrib>Chang, Cheng</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Chi, Hang</creatorcontrib><creatorcontrib>Zheng, Lei</creatorcontrib><creatorcontrib>Gong, Shengkai</creatorcontrib><creatorcontrib>Uher, Ctirad</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G</creatorcontrib><title>Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We report enhanced thermoelectric performance in SnTe, where significantly improved electrical transport properties and reduced thermal conductivity were achieved simultaneously. The former was obtained from a larger hole Seebeck coefficient through Fermi level tuning by optimizing the carrier concentration with Ga, In, Bi, and Sb dopants, resulting in a power factor of 21 μW cm–1 K–2 and ZT of 0.9 at 823 K in Sn0.97Bi0.03Te. To reduce the lattice thermal conductivity without deteriorating the hole carrier mobility in Sn0.97Bi0.03Te, SrTe was chosen as the second phase to create strained endotaxial nanostructures as phonon scattering centers. As a result, the lattice thermal conductivity decreases strongly from ∼2.0 Wm–1 K–1 for Sn0.97Bi0.03Te to ∼1.2 Wm–1 K–1 as the SrTe content is increased from 0 to 5.0% at room temperature and from ∼1.1 to ∼0.70 Wm–1 K–1 at 823 K. For the Sn0.97Bi0.03Te-3% SrTe sample, this leads to a ZT of 1.2 at 823 K and a high average ZT (for SnTe) of 0.7 in the temperature range of 300–823 K, suggesting that SnTe is a robust candidate for medium-temperature thermoelectric applications.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRbK3ePMsePZi6H02yOUpbP6CgkHgOk90pSWk2ZXeL9t-b0OrJ0_Ayz7wMDyG3nE05E_xxA9pP44pLkSZnZMxjwaKYi-ScjBljIkpVIkfkyvtNH2dC8UsyEolKeZbEYwJLW4PVaGhRo2s73KIOrtH0w3U7dKFBTxtLQ4103u1tQBct-oWhuS2Q5gcfsKVfTahpHhw0tt8srekCfDewpbkr8JpcrGHr8eY0J-TzeVnMX6PV-8vb_GkVgUx4iATXswQAFShWDSEVCgyw2GSgBKTaZCiZkSzOlE4zaSoBeiYFN0LGKJWckIdjr3ad9w7X5c41LbhDyVk5mCoHU-XJVI_fHfHdvmrR_MG_anrg_ggMV5tu72z__f9dP-lIcmo</recordid><startdate>20160224</startdate><enddate>20160224</enddate><creator>Zhao, Li-Dong</creator><creator>Zhang, Xiao</creator><creator>Wu, Haijun</creator><creator>Tan, Gangjian</creator><creator>Pei, Yanling</creator><creator>Xiao, Yu</creator><creator>Chang, Cheng</creator><creator>Wu, Di</creator><creator>Chi, Hang</creator><creator>Zheng, Lei</creator><creator>Gong, Shengkai</creator><creator>Uher, Ctirad</creator><creator>He, Jiaqing</creator><creator>Kanatzidis, Mercouri G</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160224</creationdate><title>Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe</title><author>Zhao, Li-Dong ; Zhang, Xiao ; Wu, Haijun ; Tan, Gangjian ; Pei, Yanling ; Xiao, Yu ; Chang, Cheng ; Wu, Di ; Chi, Hang ; Zheng, Lei ; Gong, Shengkai ; Uher, Ctirad ; He, Jiaqing ; Kanatzidis, Mercouri G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-21c46aae8a80b21c4728ada05d9a82a7cd9e30d30598c793db2ac4321d235e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Li-Dong</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Wu, Haijun</creatorcontrib><creatorcontrib>Tan, Gangjian</creatorcontrib><creatorcontrib>Pei, Yanling</creatorcontrib><creatorcontrib>Xiao, Yu</creatorcontrib><creatorcontrib>Chang, Cheng</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Chi, Hang</creatorcontrib><creatorcontrib>Zheng, Lei</creatorcontrib><creatorcontrib>Gong, Shengkai</creatorcontrib><creatorcontrib>Uher, Ctirad</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Li-Dong</au><au>Zhang, Xiao</au><au>Wu, Haijun</au><au>Tan, Gangjian</au><au>Pei, Yanling</au><au>Xiao, Yu</au><au>Chang, Cheng</au><au>Wu, Di</au><au>Chi, Hang</au><au>Zheng, Lei</au><au>Gong, Shengkai</au><au>Uher, Ctirad</au><au>He, Jiaqing</au><au>Kanatzidis, Mercouri G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-02-24</date><risdate>2016</risdate><volume>138</volume><issue>7</issue><spage>2366</spage><epage>2373</epage><pages>2366-2373</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>We report enhanced thermoelectric performance in SnTe, where significantly improved electrical transport properties and reduced thermal conductivity were achieved simultaneously. The former was obtained from a larger hole Seebeck coefficient through Fermi level tuning by optimizing the carrier concentration with Ga, In, Bi, and Sb dopants, resulting in a power factor of 21 μW cm–1 K–2 and ZT of 0.9 at 823 K in Sn0.97Bi0.03Te. To reduce the lattice thermal conductivity without deteriorating the hole carrier mobility in Sn0.97Bi0.03Te, SrTe was chosen as the second phase to create strained endotaxial nanostructures as phonon scattering centers. As a result, the lattice thermal conductivity decreases strongly from ∼2.0 Wm–1 K–1 for Sn0.97Bi0.03Te to ∼1.2 Wm–1 K–1 as the SrTe content is increased from 0 to 5.0% at room temperature and from ∼1.1 to ∼0.70 Wm–1 K–1 at 823 K. For the Sn0.97Bi0.03Te-3% SrTe sample, this leads to a ZT of 1.2 at 823 K and a high average ZT (for SnTe) of 0.7 in the temperature range of 300–823 K, suggesting that SnTe is a robust candidate for medium-temperature thermoelectric applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26871965</pmid><doi>10.1021/jacs.5b13276</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2016-02, Vol.138 (7), p.2366-2373 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jacs_5b13276 |
source | ACS Publications |
title | Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Thermoelectric%20Properties%20in%20the%20Counter-Doped%20SnTe%20System%20with%20Strained%20Endotaxial%20SrTe&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhao,%20Li-Dong&rft.date=2016-02-24&rft.volume=138&rft.issue=7&rft.spage=2366&rft.epage=2373&rft.pages=2366-2373&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b13276&rft_dat=%3Cacs_cross%3Ec255036633%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26871965&rfr_iscdi=true |