Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster
Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reac...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2016-04, Vol.138 (16), p.5262-5270 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5270 |
---|---|
container_issue | 16 |
container_start_page | 5262 |
container_title | Journal of the American Chemical Society |
container_volume | 138 |
creator | Aussignargues, Clément Pandelia, Maria-Eirini Sutter, Markus Plegaria, Jefferson S Zarzycki, Jan Turmo, Aiko Huang, Jingcheng Ducat, Daniel C Hegg, Eric L Gibney, Brian R Kerfeld, Cheryl A |
description | Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of −370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells. |
doi_str_mv | 10.1021/jacs.5b11734 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jacs_5b11734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a044025458</sourcerecordid><originalsourceid>FETCH-LOGICAL-a395t-f46a27addd3caf2e7d97af4dfc8c679adc62624d2e5e2fc3c4b2bf12d42641db3</originalsourceid><addsrcrecordid>eNptkEFLwzAUgIMobk5vniVHD3YmaZqsRzc2FSYK05NISZMXbWnTkaQH_70dm548PR587-PxIXRJyZQSRm9rpcM0KymVKT9CY5oxkmSUiWM0JoSwRM5EOkJnIdTDytmMnqIRE5JwkcsxqjfR9zr2HrByBq96p2PVOdxZrPBc6Qi-Ug1-qrTvdNdulY8tuIg3X9A0-MV3ESqHl-6zcgAeDI4dnleDSeF3voKEbz7wounD4DlHJ1Y1AS4Oc4LeVsvXxUOyfr5_XNytE5XmWUwsF4pJZYxJtbIMpMmlstxYPdNC5spowQTjhkEGzOpU85KVljLDmeDUlOkE3ey9w8sheLDF1let8t8FJcUuWbFLVhySDfjVHt_2ZQvmD_5tNADXe2B3VXe9d8P3_7t-AJ9wdjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Aussignargues, Clément ; Pandelia, Maria-Eirini ; Sutter, Markus ; Plegaria, Jefferson S ; Zarzycki, Jan ; Turmo, Aiko ; Huang, Jingcheng ; Ducat, Daniel C ; Hegg, Eric L ; Gibney, Brian R ; Kerfeld, Cheryl A</creator><creatorcontrib>Aussignargues, Clément ; Pandelia, Maria-Eirini ; Sutter, Markus ; Plegaria, Jefferson S ; Zarzycki, Jan ; Turmo, Aiko ; Huang, Jingcheng ; Ducat, Daniel C ; Hegg, Eric L ; Gibney, Brian R ; Kerfeld, Cheryl A</creatorcontrib><description>Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of −370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b11734</identifier><identifier>PMID: 26704697</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Binding Sites ; Crystallography, X-Ray ; Cysteine - chemistry ; Electron Spin Resonance Spectroscopy ; Iron-Sulfur Proteins - chemistry ; Iron-Sulfur Proteins - metabolism ; Oxidation-Reduction ; Protein Engineering - methods ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism</subject><ispartof>Journal of the American Chemical Society, 2016-04, Vol.138 (16), p.5262-5270</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a395t-f46a27addd3caf2e7d97af4dfc8c679adc62624d2e5e2fc3c4b2bf12d42641db3</citedby><cites>FETCH-LOGICAL-a395t-f46a27addd3caf2e7d97af4dfc8c679adc62624d2e5e2fc3c4b2bf12d42641db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b11734$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b11734$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26704697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aussignargues, Clément</creatorcontrib><creatorcontrib>Pandelia, Maria-Eirini</creatorcontrib><creatorcontrib>Sutter, Markus</creatorcontrib><creatorcontrib>Plegaria, Jefferson S</creatorcontrib><creatorcontrib>Zarzycki, Jan</creatorcontrib><creatorcontrib>Turmo, Aiko</creatorcontrib><creatorcontrib>Huang, Jingcheng</creatorcontrib><creatorcontrib>Ducat, Daniel C</creatorcontrib><creatorcontrib>Hegg, Eric L</creatorcontrib><creatorcontrib>Gibney, Brian R</creatorcontrib><creatorcontrib>Kerfeld, Cheryl A</creatorcontrib><title>Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of −370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine - chemistry</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Iron-Sulfur Proteins - chemistry</subject><subject>Iron-Sulfur Proteins - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Protein Engineering - methods</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEFLwzAUgIMobk5vniVHD3YmaZqsRzc2FSYK05NISZMXbWnTkaQH_70dm548PR587-PxIXRJyZQSRm9rpcM0KymVKT9CY5oxkmSUiWM0JoSwRM5EOkJnIdTDytmMnqIRE5JwkcsxqjfR9zr2HrByBq96p2PVOdxZrPBc6Qi-Ug1-qrTvdNdulY8tuIg3X9A0-MV3ESqHl-6zcgAeDI4dnleDSeF3voKEbz7wounD4DlHJ1Y1AS4Oc4LeVsvXxUOyfr5_XNytE5XmWUwsF4pJZYxJtbIMpMmlstxYPdNC5spowQTjhkEGzOpU85KVljLDmeDUlOkE3ey9w8sheLDF1let8t8FJcUuWbFLVhySDfjVHt_2ZQvmD_5tNADXe2B3VXe9d8P3_7t-AJ9wdjk</recordid><startdate>20160427</startdate><enddate>20160427</enddate><creator>Aussignargues, Clément</creator><creator>Pandelia, Maria-Eirini</creator><creator>Sutter, Markus</creator><creator>Plegaria, Jefferson S</creator><creator>Zarzycki, Jan</creator><creator>Turmo, Aiko</creator><creator>Huang, Jingcheng</creator><creator>Ducat, Daniel C</creator><creator>Hegg, Eric L</creator><creator>Gibney, Brian R</creator><creator>Kerfeld, Cheryl A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160427</creationdate><title>Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster</title><author>Aussignargues, Clément ; Pandelia, Maria-Eirini ; Sutter, Markus ; Plegaria, Jefferson S ; Zarzycki, Jan ; Turmo, Aiko ; Huang, Jingcheng ; Ducat, Daniel C ; Hegg, Eric L ; Gibney, Brian R ; Kerfeld, Cheryl A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a395t-f46a27addd3caf2e7d97af4dfc8c679adc62624d2e5e2fc3c4b2bf12d42641db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine - chemistry</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Iron-Sulfur Proteins - chemistry</topic><topic>Iron-Sulfur Proteins - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Protein Engineering - methods</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aussignargues, Clément</creatorcontrib><creatorcontrib>Pandelia, Maria-Eirini</creatorcontrib><creatorcontrib>Sutter, Markus</creatorcontrib><creatorcontrib>Plegaria, Jefferson S</creatorcontrib><creatorcontrib>Zarzycki, Jan</creatorcontrib><creatorcontrib>Turmo, Aiko</creatorcontrib><creatorcontrib>Huang, Jingcheng</creatorcontrib><creatorcontrib>Ducat, Daniel C</creatorcontrib><creatorcontrib>Hegg, Eric L</creatorcontrib><creatorcontrib>Gibney, Brian R</creatorcontrib><creatorcontrib>Kerfeld, Cheryl A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aussignargues, Clément</au><au>Pandelia, Maria-Eirini</au><au>Sutter, Markus</au><au>Plegaria, Jefferson S</au><au>Zarzycki, Jan</au><au>Turmo, Aiko</au><au>Huang, Jingcheng</au><au>Ducat, Daniel C</au><au>Hegg, Eric L</au><au>Gibney, Brian R</au><au>Kerfeld, Cheryl A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-04-27</date><risdate>2016</risdate><volume>138</volume><issue>16</issue><spage>5262</spage><epage>5270</epage><pages>5262-5270</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of −370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26704697</pmid><doi>10.1021/jacs.5b11734</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2016-04, Vol.138 (16), p.5262-5270 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jacs_5b11734 |
source | MEDLINE; American Chemical Society Journals |
subjects | Bacterial Proteins - chemistry Bacterial Proteins - metabolism Binding Sites Crystallography, X-Ray Cysteine - chemistry Electron Spin Resonance Spectroscopy Iron-Sulfur Proteins - chemistry Iron-Sulfur Proteins - metabolism Oxidation-Reduction Protein Engineering - methods Recombinant Proteins - chemistry Recombinant Proteins - metabolism |
title | Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Function%20of%20a%20Bacterial%20Microcompartment%20Shell%20Protein%20Engineered%20to%20Bind%20a%20%5B4Fe-4S%5D%20Cluster&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Aussignargues,%20Cle%CC%81ment&rft.date=2016-04-27&rft.volume=138&rft.issue=16&rft.spage=5262&rft.epage=5270&rft.pages=5262-5270&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b11734&rft_dat=%3Cacs_cross%3Ea044025458%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26704697&rfr_iscdi=true |