Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster

Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-04, Vol.138 (16), p.5262-5270
Hauptverfasser: Aussignargues, Clément, Pandelia, Maria-Eirini, Sutter, Markus, Plegaria, Jefferson S, Zarzycki, Jan, Turmo, Aiko, Huang, Jingcheng, Ducat, Daniel C, Hegg, Eric L, Gibney, Brian R, Kerfeld, Cheryl A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5270
container_issue 16
container_start_page 5262
container_title Journal of the American Chemical Society
container_volume 138
creator Aussignargues, Clément
Pandelia, Maria-Eirini
Sutter, Markus
Plegaria, Jefferson S
Zarzycki, Jan
Turmo, Aiko
Huang, Jingcheng
Ducat, Daniel C
Hegg, Eric L
Gibney, Brian R
Kerfeld, Cheryl A
description Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of −370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells.
doi_str_mv 10.1021/jacs.5b11734
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jacs_5b11734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a044025458</sourcerecordid><originalsourceid>FETCH-LOGICAL-a395t-f46a27addd3caf2e7d97af4dfc8c679adc62624d2e5e2fc3c4b2bf12d42641db3</originalsourceid><addsrcrecordid>eNptkEFLwzAUgIMobk5vniVHD3YmaZqsRzc2FSYK05NISZMXbWnTkaQH_70dm548PR587-PxIXRJyZQSRm9rpcM0KymVKT9CY5oxkmSUiWM0JoSwRM5EOkJnIdTDytmMnqIRE5JwkcsxqjfR9zr2HrByBq96p2PVOdxZrPBc6Qi-Ug1-qrTvdNdulY8tuIg3X9A0-MV3ESqHl-6zcgAeDI4dnleDSeF3voKEbz7wounD4DlHJ1Y1AS4Oc4LeVsvXxUOyfr5_XNytE5XmWUwsF4pJZYxJtbIMpMmlstxYPdNC5spowQTjhkEGzOpU85KVljLDmeDUlOkE3ey9w8sheLDF1let8t8FJcUuWbFLVhySDfjVHt_2ZQvmD_5tNADXe2B3VXe9d8P3_7t-AJ9wdjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Aussignargues, Clément ; Pandelia, Maria-Eirini ; Sutter, Markus ; Plegaria, Jefferson S ; Zarzycki, Jan ; Turmo, Aiko ; Huang, Jingcheng ; Ducat, Daniel C ; Hegg, Eric L ; Gibney, Brian R ; Kerfeld, Cheryl A</creator><creatorcontrib>Aussignargues, Clément ; Pandelia, Maria-Eirini ; Sutter, Markus ; Plegaria, Jefferson S ; Zarzycki, Jan ; Turmo, Aiko ; Huang, Jingcheng ; Ducat, Daniel C ; Hegg, Eric L ; Gibney, Brian R ; Kerfeld, Cheryl A</creatorcontrib><description>Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of −370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b11734</identifier><identifier>PMID: 26704697</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Binding Sites ; Crystallography, X-Ray ; Cysteine - chemistry ; Electron Spin Resonance Spectroscopy ; Iron-Sulfur Proteins - chemistry ; Iron-Sulfur Proteins - metabolism ; Oxidation-Reduction ; Protein Engineering - methods ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism</subject><ispartof>Journal of the American Chemical Society, 2016-04, Vol.138 (16), p.5262-5270</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a395t-f46a27addd3caf2e7d97af4dfc8c679adc62624d2e5e2fc3c4b2bf12d42641db3</citedby><cites>FETCH-LOGICAL-a395t-f46a27addd3caf2e7d97af4dfc8c679adc62624d2e5e2fc3c4b2bf12d42641db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b11734$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b11734$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26704697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aussignargues, Clément</creatorcontrib><creatorcontrib>Pandelia, Maria-Eirini</creatorcontrib><creatorcontrib>Sutter, Markus</creatorcontrib><creatorcontrib>Plegaria, Jefferson S</creatorcontrib><creatorcontrib>Zarzycki, Jan</creatorcontrib><creatorcontrib>Turmo, Aiko</creatorcontrib><creatorcontrib>Huang, Jingcheng</creatorcontrib><creatorcontrib>Ducat, Daniel C</creatorcontrib><creatorcontrib>Hegg, Eric L</creatorcontrib><creatorcontrib>Gibney, Brian R</creatorcontrib><creatorcontrib>Kerfeld, Cheryl A</creatorcontrib><title>Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of −370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine - chemistry</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Iron-Sulfur Proteins - chemistry</subject><subject>Iron-Sulfur Proteins - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Protein Engineering - methods</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEFLwzAUgIMobk5vniVHD3YmaZqsRzc2FSYK05NISZMXbWnTkaQH_70dm548PR587-PxIXRJyZQSRm9rpcM0KymVKT9CY5oxkmSUiWM0JoSwRM5EOkJnIdTDytmMnqIRE5JwkcsxqjfR9zr2HrByBq96p2PVOdxZrPBc6Qi-Ug1-qrTvdNdulY8tuIg3X9A0-MV3ESqHl-6zcgAeDI4dnleDSeF3voKEbz7wounD4DlHJ1Y1AS4Oc4LeVsvXxUOyfr5_XNytE5XmWUwsF4pJZYxJtbIMpMmlstxYPdNC5spowQTjhkEGzOpU85KVljLDmeDUlOkE3ey9w8sheLDF1let8t8FJcUuWbFLVhySDfjVHt_2ZQvmD_5tNADXe2B3VXe9d8P3_7t-AJ9wdjk</recordid><startdate>20160427</startdate><enddate>20160427</enddate><creator>Aussignargues, Clément</creator><creator>Pandelia, Maria-Eirini</creator><creator>Sutter, Markus</creator><creator>Plegaria, Jefferson S</creator><creator>Zarzycki, Jan</creator><creator>Turmo, Aiko</creator><creator>Huang, Jingcheng</creator><creator>Ducat, Daniel C</creator><creator>Hegg, Eric L</creator><creator>Gibney, Brian R</creator><creator>Kerfeld, Cheryl A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160427</creationdate><title>Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster</title><author>Aussignargues, Clément ; Pandelia, Maria-Eirini ; Sutter, Markus ; Plegaria, Jefferson S ; Zarzycki, Jan ; Turmo, Aiko ; Huang, Jingcheng ; Ducat, Daniel C ; Hegg, Eric L ; Gibney, Brian R ; Kerfeld, Cheryl A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a395t-f46a27addd3caf2e7d97af4dfc8c679adc62624d2e5e2fc3c4b2bf12d42641db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine - chemistry</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Iron-Sulfur Proteins - chemistry</topic><topic>Iron-Sulfur Proteins - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Protein Engineering - methods</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aussignargues, Clément</creatorcontrib><creatorcontrib>Pandelia, Maria-Eirini</creatorcontrib><creatorcontrib>Sutter, Markus</creatorcontrib><creatorcontrib>Plegaria, Jefferson S</creatorcontrib><creatorcontrib>Zarzycki, Jan</creatorcontrib><creatorcontrib>Turmo, Aiko</creatorcontrib><creatorcontrib>Huang, Jingcheng</creatorcontrib><creatorcontrib>Ducat, Daniel C</creatorcontrib><creatorcontrib>Hegg, Eric L</creatorcontrib><creatorcontrib>Gibney, Brian R</creatorcontrib><creatorcontrib>Kerfeld, Cheryl A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aussignargues, Clément</au><au>Pandelia, Maria-Eirini</au><au>Sutter, Markus</au><au>Plegaria, Jefferson S</au><au>Zarzycki, Jan</au><au>Turmo, Aiko</au><au>Huang, Jingcheng</au><au>Ducat, Daniel C</au><au>Hegg, Eric L</au><au>Gibney, Brian R</au><au>Kerfeld, Cheryl A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-04-27</date><risdate>2016</risdate><volume>138</volume><issue>16</issue><spage>5262</spage><epage>5270</epage><pages>5262-5270</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of −370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26704697</pmid><doi>10.1021/jacs.5b11734</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2016-04, Vol.138 (16), p.5262-5270
issn 0002-7863
1520-5126
language eng
recordid cdi_crossref_primary_10_1021_jacs_5b11734
source MEDLINE; American Chemical Society Journals
subjects Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Binding Sites
Crystallography, X-Ray
Cysteine - chemistry
Electron Spin Resonance Spectroscopy
Iron-Sulfur Proteins - chemistry
Iron-Sulfur Proteins - metabolism
Oxidation-Reduction
Protein Engineering - methods
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
title Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Function%20of%20a%20Bacterial%20Microcompartment%20Shell%20Protein%20Engineered%20to%20Bind%20a%20%5B4Fe-4S%5D%20Cluster&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Aussignargues,%20Cle%CC%81ment&rft.date=2016-04-27&rft.volume=138&rft.issue=16&rft.spage=5262&rft.epage=5270&rft.pages=5262-5270&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b11734&rft_dat=%3Cacs_cross%3Ea044025458%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26704697&rfr_iscdi=true