Weakly Solvating Solution Enables Chemical Prelithiation of Graphite–SiO x Anodes for High-Energy Li-Ion Batteries
Although often overlooked in anode research, the anode’s initial Coulombic efficiency (ICE) is a crucial factor dictating the energy density of a practical Li-ion battery. For next-generation anodes, a blend of graphite and Si/SiO x represents the most practical way to balance capacity and cycle lif...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-06, Vol.143 (24), p.9169-9176 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9176 |
---|---|
container_issue | 24 |
container_start_page | 9169 |
container_title | Journal of the American Chemical Society |
container_volume | 143 |
creator | Choi, Jinkwan Jeong, Hyangsoo Jang, Juyoung Jeon, A-Re Kang, Inyeong Kwon, Minhyung Hong, Jihyun Lee, Minah |
description | Although often overlooked in anode research, the anode’s initial Coulombic efficiency (ICE) is a crucial factor dictating the energy density of a practical Li-ion battery. For next-generation anodes, a blend of graphite and Si/SiO x represents the most practical way to balance capacity and cycle life, but its low ICE limits its commercial viability. Here, we develop a chemical prelithiation method to maximize the ICE of the blend anodes using a reductive Li–arene complex solution of regulated solvation power, which enables a full cell to exhibit a near-ideal energy density. To prevent structural degradation of the blend during prelithiation, we investigate a solvation rule to direct the Li+ intercalation mechanism. Combined spectroscopy and density functional theory calculations reveal that in weakly solvating solutions, where the Li+–anion interaction is enhanced, free solvated-ion formation is inhibited during Li+ desolvation, thereby mitigating solvated-ion intercalation into graphite and allowing stable prelithiation of the blend. Given the ideal ICE of the prelithiated blend anode, a full cell exhibits an energy density of 506 Wh kg–1 (98.6% of the ideal value), with a capacity retention after 250 cycles of 87.3%. This work highlights the promise of adopting chemical prelithiation for high-capacity anodes to achieve practical high-energy batteries. |
doi_str_mv | 10.1021/jacs.1c03648 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jacs_1c03648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b902684648</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1138-5752ebe5b289dd41685ad4129aa56fe7b05dc43de758dfd69bae4e0365985af03</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0EEqWw4wBesiDFduLEWZaqtJUqFakgltEkmTQuaVLZKSI77sANOQkO7ZLV_H1vNPMIueVsxJngD1vI7IhnzA8DdUYGXArmSS7CczJgjAkvUqF_Sa6s3boyEIoPSPuG8F51dN1UH9DqetNnh1Y3NZ3WkFZo6aTEnc6gos8GK92WGv7GTUFnBvalbvHn63utV_STjusmd4qiMXSuN6U3rdFsOrrU3sIpHqFt0Wi01-SigMrizSkOyevT9GUy95ar2WIyXnrAua88GUmBKcpUqDjPAx4qCS6IGECGBUYpk3kW-DlGUuVFHsYpYIDuexk7smD-kNwf92amsdZgkeyN3oHpEs6S3rGkdyw5OebwuyPeN7fNwdTuuP_RX9ojbnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weakly Solvating Solution Enables Chemical Prelithiation of Graphite–SiO x Anodes for High-Energy Li-Ion Batteries</title><source>American Chemical Society Journals</source><creator>Choi, Jinkwan ; Jeong, Hyangsoo ; Jang, Juyoung ; Jeon, A-Re ; Kang, Inyeong ; Kwon, Minhyung ; Hong, Jihyun ; Lee, Minah</creator><creatorcontrib>Choi, Jinkwan ; Jeong, Hyangsoo ; Jang, Juyoung ; Jeon, A-Re ; Kang, Inyeong ; Kwon, Minhyung ; Hong, Jihyun ; Lee, Minah</creatorcontrib><description>Although often overlooked in anode research, the anode’s initial Coulombic efficiency (ICE) is a crucial factor dictating the energy density of a practical Li-ion battery. For next-generation anodes, a blend of graphite and Si/SiO x represents the most practical way to balance capacity and cycle life, but its low ICE limits its commercial viability. Here, we develop a chemical prelithiation method to maximize the ICE of the blend anodes using a reductive Li–arene complex solution of regulated solvation power, which enables a full cell to exhibit a near-ideal energy density. To prevent structural degradation of the blend during prelithiation, we investigate a solvation rule to direct the Li+ intercalation mechanism. Combined spectroscopy and density functional theory calculations reveal that in weakly solvating solutions, where the Li+–anion interaction is enhanced, free solvated-ion formation is inhibited during Li+ desolvation, thereby mitigating solvated-ion intercalation into graphite and allowing stable prelithiation of the blend. Given the ideal ICE of the prelithiated blend anode, a full cell exhibits an energy density of 506 Wh kg–1 (98.6% of the ideal value), with a capacity retention after 250 cycles of 87.3%. This work highlights the promise of adopting chemical prelithiation for high-capacity anodes to achieve practical high-energy batteries.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c03648</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-06, Vol.143 (24), p.9169-9176</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1138-5752ebe5b289dd41685ad4129aa56fe7b05dc43de758dfd69bae4e0365985af03</citedby><cites>FETCH-LOGICAL-a1138-5752ebe5b289dd41685ad4129aa56fe7b05dc43de758dfd69bae4e0365985af03</cites><orcidid>0000-0002-0101-5699 ; 0000-0001-7210-2901 ; 0000-0003-0047-1358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c03648$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c03648$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Choi, Jinkwan</creatorcontrib><creatorcontrib>Jeong, Hyangsoo</creatorcontrib><creatorcontrib>Jang, Juyoung</creatorcontrib><creatorcontrib>Jeon, A-Re</creatorcontrib><creatorcontrib>Kang, Inyeong</creatorcontrib><creatorcontrib>Kwon, Minhyung</creatorcontrib><creatorcontrib>Hong, Jihyun</creatorcontrib><creatorcontrib>Lee, Minah</creatorcontrib><title>Weakly Solvating Solution Enables Chemical Prelithiation of Graphite–SiO x Anodes for High-Energy Li-Ion Batteries</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Although often overlooked in anode research, the anode’s initial Coulombic efficiency (ICE) is a crucial factor dictating the energy density of a practical Li-ion battery. For next-generation anodes, a blend of graphite and Si/SiO x represents the most practical way to balance capacity and cycle life, but its low ICE limits its commercial viability. Here, we develop a chemical prelithiation method to maximize the ICE of the blend anodes using a reductive Li–arene complex solution of regulated solvation power, which enables a full cell to exhibit a near-ideal energy density. To prevent structural degradation of the blend during prelithiation, we investigate a solvation rule to direct the Li+ intercalation mechanism. Combined spectroscopy and density functional theory calculations reveal that in weakly solvating solutions, where the Li+–anion interaction is enhanced, free solvated-ion formation is inhibited during Li+ desolvation, thereby mitigating solvated-ion intercalation into graphite and allowing stable prelithiation of the blend. Given the ideal ICE of the prelithiated blend anode, a full cell exhibits an energy density of 506 Wh kg–1 (98.6% of the ideal value), with a capacity retention after 250 cycles of 87.3%. This work highlights the promise of adopting chemical prelithiation for high-capacity anodes to achieve practical high-energy batteries.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQhS0EEqWw4wBesiDFduLEWZaqtJUqFakgltEkmTQuaVLZKSI77sANOQkO7ZLV_H1vNPMIueVsxJngD1vI7IhnzA8DdUYGXArmSS7CczJgjAkvUqF_Sa6s3boyEIoPSPuG8F51dN1UH9DqetNnh1Y3NZ3WkFZo6aTEnc6gos8GK92WGv7GTUFnBvalbvHn63utV_STjusmd4qiMXSuN6U3rdFsOrrU3sIpHqFt0Wi01-SigMrizSkOyevT9GUy95ar2WIyXnrAua88GUmBKcpUqDjPAx4qCS6IGECGBUYpk3kW-DlGUuVFHsYpYIDuexk7smD-kNwf92amsdZgkeyN3oHpEs6S3rGkdyw5OebwuyPeN7fNwdTuuP_RX9ojbnA</recordid><startdate>20210623</startdate><enddate>20210623</enddate><creator>Choi, Jinkwan</creator><creator>Jeong, Hyangsoo</creator><creator>Jang, Juyoung</creator><creator>Jeon, A-Re</creator><creator>Kang, Inyeong</creator><creator>Kwon, Minhyung</creator><creator>Hong, Jihyun</creator><creator>Lee, Minah</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0101-5699</orcidid><orcidid>https://orcid.org/0000-0001-7210-2901</orcidid><orcidid>https://orcid.org/0000-0003-0047-1358</orcidid></search><sort><creationdate>20210623</creationdate><title>Weakly Solvating Solution Enables Chemical Prelithiation of Graphite–SiO x Anodes for High-Energy Li-Ion Batteries</title><author>Choi, Jinkwan ; Jeong, Hyangsoo ; Jang, Juyoung ; Jeon, A-Re ; Kang, Inyeong ; Kwon, Minhyung ; Hong, Jihyun ; Lee, Minah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1138-5752ebe5b289dd41685ad4129aa56fe7b05dc43de758dfd69bae4e0365985af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jinkwan</creatorcontrib><creatorcontrib>Jeong, Hyangsoo</creatorcontrib><creatorcontrib>Jang, Juyoung</creatorcontrib><creatorcontrib>Jeon, A-Re</creatorcontrib><creatorcontrib>Kang, Inyeong</creatorcontrib><creatorcontrib>Kwon, Minhyung</creatorcontrib><creatorcontrib>Hong, Jihyun</creatorcontrib><creatorcontrib>Lee, Minah</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jinkwan</au><au>Jeong, Hyangsoo</au><au>Jang, Juyoung</au><au>Jeon, A-Re</au><au>Kang, Inyeong</au><au>Kwon, Minhyung</au><au>Hong, Jihyun</au><au>Lee, Minah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weakly Solvating Solution Enables Chemical Prelithiation of Graphite–SiO x Anodes for High-Energy Li-Ion Batteries</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-06-23</date><risdate>2021</risdate><volume>143</volume><issue>24</issue><spage>9169</spage><epage>9176</epage><pages>9169-9176</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Although often overlooked in anode research, the anode’s initial Coulombic efficiency (ICE) is a crucial factor dictating the energy density of a practical Li-ion battery. For next-generation anodes, a blend of graphite and Si/SiO x represents the most practical way to balance capacity and cycle life, but its low ICE limits its commercial viability. Here, we develop a chemical prelithiation method to maximize the ICE of the blend anodes using a reductive Li–arene complex solution of regulated solvation power, which enables a full cell to exhibit a near-ideal energy density. To prevent structural degradation of the blend during prelithiation, we investigate a solvation rule to direct the Li+ intercalation mechanism. Combined spectroscopy and density functional theory calculations reveal that in weakly solvating solutions, where the Li+–anion interaction is enhanced, free solvated-ion formation is inhibited during Li+ desolvation, thereby mitigating solvated-ion intercalation into graphite and allowing stable prelithiation of the blend. Given the ideal ICE of the prelithiated blend anode, a full cell exhibits an energy density of 506 Wh kg–1 (98.6% of the ideal value), with a capacity retention after 250 cycles of 87.3%. This work highlights the promise of adopting chemical prelithiation for high-capacity anodes to achieve practical high-energy batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.1c03648</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0101-5699</orcidid><orcidid>https://orcid.org/0000-0001-7210-2901</orcidid><orcidid>https://orcid.org/0000-0003-0047-1358</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2021-06, Vol.143 (24), p.9169-9176 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jacs_1c03648 |
source | American Chemical Society Journals |
title | Weakly Solvating Solution Enables Chemical Prelithiation of Graphite–SiO x Anodes for High-Energy Li-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weakly%20Solvating%20Solution%20Enables%20Chemical%20Prelithiation%20of%20Graphite%E2%80%93SiO%20x%20Anodes%20for%20High-Energy%20Li-Ion%20Batteries&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Choi,%20Jinkwan&rft.date=2021-06-23&rft.volume=143&rft.issue=24&rft.spage=9169&rft.epage=9176&rft.pages=9169-9176&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c03648&rft_dat=%3Cacs_cross%3Eb902684648%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |