Interfacial sp C–O–Mo Hybridization Originated High-Current Density Hydrogen Evolution

High-current density (≥1 A cm–2) is a critical factor for large-scale industrial application of water-splitting electrocatalysts, especially seawater-splitting. However, it still remains a great challenge to reach high-current density due to the lack of active and stable intrinsic catalytic active s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-06, Vol.143 (23), p.8720-8730
Hauptverfasser: Yao, Yuan, Zhu, Yuhua, Pan, Chuanqi, Wang, Chenyang, Hu, Siyu, Xiao, Wen, Chi, Xiao, Fang, Yarong, Yang, Ji, Deng, Hongtao, Xiao, Shengqiang, Li, Junbo, Luo, Zhu, Guo, Yanbing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8730
container_issue 23
container_start_page 8720
container_title Journal of the American Chemical Society
container_volume 143
creator Yao, Yuan
Zhu, Yuhua
Pan, Chuanqi
Wang, Chenyang
Hu, Siyu
Xiao, Wen
Chi, Xiao
Fang, Yarong
Yang, Ji
Deng, Hongtao
Xiao, Shengqiang
Li, Junbo
Luo, Zhu
Guo, Yanbing
description High-current density (≥1 A cm–2) is a critical factor for large-scale industrial application of water-splitting electrocatalysts, especially seawater-splitting. However, it still remains a great challenge to reach high-current density due to the lack of active and stable intrinsic catalytic active sites in catalysts. Herein, we report an original three-dimensional self-supporting graphdiyne/molybdenum oxide (GDY/MoO3) material for efficient hydrogen evolution reaction via a rational design of “sp C–O–Mo hybridization” on the interface. The “sp C–O–Mo hybridization” creates new intrinsic catalytic active sites (nonoxygen vacancy sites) and increases the amount of active sites (eight times higher than pure MoO3). The “sp C–O–Mo hybridization” facilitates charge transfer and boosts the dissociation process of H2O molecules, leading to outstanding HER activity with high-current density (>1.2 A cm–2) in alkaline electrolyte and a decent activity and stability in natural seawater. Our results show that high-current density electrocatalysts can be achieved by interfacial chemical bond engineering, three-dimensional structure design, and hydrophilicity optimization.
doi_str_mv 10.1021/jacs.1c02831
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jacs_1c02831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539206483</sourcerecordid><originalsourceid>FETCH-LOGICAL-a367t-aba9212d719ddc8b4ccd80f25825852c5d22ec9ab48e8ecfb0283252eb5b03213</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0EEqWw4wBesiDFnsSps0Thp5WKuoENm8ixneIqtYvtIJUVd-CGnIRErcQGaUajGX3zpPcQuqRkQgnQm7WQYUIlAZ7SIzSiDEjCKOTHaEQIgWTK8_QUnYWw7tcMOB2h17mN2jdCGtHisMXlz9f3su8nh2e72htlPkU0zuKlNytjRdQKz8zqLSk777WN-E7bYOKup5V3K23x_Ydru-HlHJ00og364jDH6OXh_rmcJYvl47y8XSQizacxEbUogIKa0kIpyetMSsVJA4z3xUAyBaBlIeqMa65lUw_2gIGuWU1SoOkYXe11t969dzrEamOC1G0rrHZdqIClBZA842mPXu9R6V0IXjfV1puN8LuKkmqIsBoirA4R_ikPx7XrvO19_I_-AsJGdEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539206483</pqid></control><display><type>article</type><title>Interfacial sp C–O–Mo Hybridization Originated High-Current Density Hydrogen Evolution</title><source>ACS Publications</source><creator>Yao, Yuan ; Zhu, Yuhua ; Pan, Chuanqi ; Wang, Chenyang ; Hu, Siyu ; Xiao, Wen ; Chi, Xiao ; Fang, Yarong ; Yang, Ji ; Deng, Hongtao ; Xiao, Shengqiang ; Li, Junbo ; Luo, Zhu ; Guo, Yanbing</creator><creatorcontrib>Yao, Yuan ; Zhu, Yuhua ; Pan, Chuanqi ; Wang, Chenyang ; Hu, Siyu ; Xiao, Wen ; Chi, Xiao ; Fang, Yarong ; Yang, Ji ; Deng, Hongtao ; Xiao, Shengqiang ; Li, Junbo ; Luo, Zhu ; Guo, Yanbing</creatorcontrib><description>High-current density (≥1 A cm–2) is a critical factor for large-scale industrial application of water-splitting electrocatalysts, especially seawater-splitting. However, it still remains a great challenge to reach high-current density due to the lack of active and stable intrinsic catalytic active sites in catalysts. Herein, we report an original three-dimensional self-supporting graphdiyne/molybdenum oxide (GDY/MoO3) material for efficient hydrogen evolution reaction via a rational design of “sp C–O–Mo hybridization” on the interface. The “sp C–O–Mo hybridization” creates new intrinsic catalytic active sites (nonoxygen vacancy sites) and increases the amount of active sites (eight times higher than pure MoO3). The “sp C–O–Mo hybridization” facilitates charge transfer and boosts the dissociation process of H2O molecules, leading to outstanding HER activity with high-current density (&gt;1.2 A cm–2) in alkaline electrolyte and a decent activity and stability in natural seawater. Our results show that high-current density electrocatalysts can be achieved by interfacial chemical bond engineering, three-dimensional structure design, and hydrophilicity optimization.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c02831</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-06, Vol.143 (23), p.8720-8730</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a367t-aba9212d719ddc8b4ccd80f25825852c5d22ec9ab48e8ecfb0283252eb5b03213</citedby><cites>FETCH-LOGICAL-a367t-aba9212d719ddc8b4ccd80f25825852c5d22ec9ab48e8ecfb0283252eb5b03213</cites><orcidid>0000-0001-7644-8491 ; 0000-0002-5386-4692 ; 0000-0002-5399-1739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c02831$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c02831$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Zhu, Yuhua</creatorcontrib><creatorcontrib>Pan, Chuanqi</creatorcontrib><creatorcontrib>Wang, Chenyang</creatorcontrib><creatorcontrib>Hu, Siyu</creatorcontrib><creatorcontrib>Xiao, Wen</creatorcontrib><creatorcontrib>Chi, Xiao</creatorcontrib><creatorcontrib>Fang, Yarong</creatorcontrib><creatorcontrib>Yang, Ji</creatorcontrib><creatorcontrib>Deng, Hongtao</creatorcontrib><creatorcontrib>Xiao, Shengqiang</creatorcontrib><creatorcontrib>Li, Junbo</creatorcontrib><creatorcontrib>Luo, Zhu</creatorcontrib><creatorcontrib>Guo, Yanbing</creatorcontrib><title>Interfacial sp C–O–Mo Hybridization Originated High-Current Density Hydrogen Evolution</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>High-current density (≥1 A cm–2) is a critical factor for large-scale industrial application of water-splitting electrocatalysts, especially seawater-splitting. However, it still remains a great challenge to reach high-current density due to the lack of active and stable intrinsic catalytic active sites in catalysts. Herein, we report an original three-dimensional self-supporting graphdiyne/molybdenum oxide (GDY/MoO3) material for efficient hydrogen evolution reaction via a rational design of “sp C–O–Mo hybridization” on the interface. The “sp C–O–Mo hybridization” creates new intrinsic catalytic active sites (nonoxygen vacancy sites) and increases the amount of active sites (eight times higher than pure MoO3). The “sp C–O–Mo hybridization” facilitates charge transfer and boosts the dissociation process of H2O molecules, leading to outstanding HER activity with high-current density (&gt;1.2 A cm–2) in alkaline electrolyte and a decent activity and stability in natural seawater. Our results show that high-current density electrocatalysts can be achieved by interfacial chemical bond engineering, three-dimensional structure design, and hydrophilicity optimization.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQhS0EEqWw4wBesiDFnsSps0Thp5WKuoENm8ixneIqtYvtIJUVd-CGnIRErcQGaUajGX3zpPcQuqRkQgnQm7WQYUIlAZ7SIzSiDEjCKOTHaEQIgWTK8_QUnYWw7tcMOB2h17mN2jdCGtHisMXlz9f3su8nh2e72htlPkU0zuKlNytjRdQKz8zqLSk777WN-E7bYOKup5V3K23x_Ydru-HlHJ00og364jDH6OXh_rmcJYvl47y8XSQizacxEbUogIKa0kIpyetMSsVJA4z3xUAyBaBlIeqMa65lUw_2gIGuWU1SoOkYXe11t969dzrEamOC1G0rrHZdqIClBZA842mPXu9R6V0IXjfV1puN8LuKkmqIsBoirA4R_ikPx7XrvO19_I_-AsJGdEc</recordid><startdate>20210616</startdate><enddate>20210616</enddate><creator>Yao, Yuan</creator><creator>Zhu, Yuhua</creator><creator>Pan, Chuanqi</creator><creator>Wang, Chenyang</creator><creator>Hu, Siyu</creator><creator>Xiao, Wen</creator><creator>Chi, Xiao</creator><creator>Fang, Yarong</creator><creator>Yang, Ji</creator><creator>Deng, Hongtao</creator><creator>Xiao, Shengqiang</creator><creator>Li, Junbo</creator><creator>Luo, Zhu</creator><creator>Guo, Yanbing</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7644-8491</orcidid><orcidid>https://orcid.org/0000-0002-5386-4692</orcidid><orcidid>https://orcid.org/0000-0002-5399-1739</orcidid></search><sort><creationdate>20210616</creationdate><title>Interfacial sp C–O–Mo Hybridization Originated High-Current Density Hydrogen Evolution</title><author>Yao, Yuan ; Zhu, Yuhua ; Pan, Chuanqi ; Wang, Chenyang ; Hu, Siyu ; Xiao, Wen ; Chi, Xiao ; Fang, Yarong ; Yang, Ji ; Deng, Hongtao ; Xiao, Shengqiang ; Li, Junbo ; Luo, Zhu ; Guo, Yanbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a367t-aba9212d719ddc8b4ccd80f25825852c5d22ec9ab48e8ecfb0283252eb5b03213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Zhu, Yuhua</creatorcontrib><creatorcontrib>Pan, Chuanqi</creatorcontrib><creatorcontrib>Wang, Chenyang</creatorcontrib><creatorcontrib>Hu, Siyu</creatorcontrib><creatorcontrib>Xiao, Wen</creatorcontrib><creatorcontrib>Chi, Xiao</creatorcontrib><creatorcontrib>Fang, Yarong</creatorcontrib><creatorcontrib>Yang, Ji</creatorcontrib><creatorcontrib>Deng, Hongtao</creatorcontrib><creatorcontrib>Xiao, Shengqiang</creatorcontrib><creatorcontrib>Li, Junbo</creatorcontrib><creatorcontrib>Luo, Zhu</creatorcontrib><creatorcontrib>Guo, Yanbing</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Yuan</au><au>Zhu, Yuhua</au><au>Pan, Chuanqi</au><au>Wang, Chenyang</au><au>Hu, Siyu</au><au>Xiao, Wen</au><au>Chi, Xiao</au><au>Fang, Yarong</au><au>Yang, Ji</au><au>Deng, Hongtao</au><au>Xiao, Shengqiang</au><au>Li, Junbo</au><au>Luo, Zhu</au><au>Guo, Yanbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial sp C–O–Mo Hybridization Originated High-Current Density Hydrogen Evolution</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-06-16</date><risdate>2021</risdate><volume>143</volume><issue>23</issue><spage>8720</spage><epage>8730</epage><pages>8720-8730</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>High-current density (≥1 A cm–2) is a critical factor for large-scale industrial application of water-splitting electrocatalysts, especially seawater-splitting. However, it still remains a great challenge to reach high-current density due to the lack of active and stable intrinsic catalytic active sites in catalysts. Herein, we report an original three-dimensional self-supporting graphdiyne/molybdenum oxide (GDY/MoO3) material for efficient hydrogen evolution reaction via a rational design of “sp C–O–Mo hybridization” on the interface. The “sp C–O–Mo hybridization” creates new intrinsic catalytic active sites (nonoxygen vacancy sites) and increases the amount of active sites (eight times higher than pure MoO3). The “sp C–O–Mo hybridization” facilitates charge transfer and boosts the dissociation process of H2O molecules, leading to outstanding HER activity with high-current density (&gt;1.2 A cm–2) in alkaline electrolyte and a decent activity and stability in natural seawater. Our results show that high-current density electrocatalysts can be achieved by interfacial chemical bond engineering, three-dimensional structure design, and hydrophilicity optimization.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.1c02831</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7644-8491</orcidid><orcidid>https://orcid.org/0000-0002-5386-4692</orcidid><orcidid>https://orcid.org/0000-0002-5399-1739</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-06, Vol.143 (23), p.8720-8730
issn 0002-7863
1520-5126
language eng
recordid cdi_crossref_primary_10_1021_jacs_1c02831
source ACS Publications
title Interfacial sp C–O–Mo Hybridization Originated High-Current Density Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20sp%20C%E2%80%93O%E2%80%93Mo%20Hybridization%20Originated%20High-Current%20Density%20Hydrogen%20Evolution&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Yao,%20Yuan&rft.date=2021-06-16&rft.volume=143&rft.issue=23&rft.spage=8720&rft.epage=8730&rft.pages=8720-8730&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c02831&rft_dat=%3Cproquest_cross%3E2539206483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539206483&rft_id=info:pmid/&rfr_iscdi=true