A Method for Measuring Heteronuclear (1H−13C) Distances in High Speed MAS NMR

Magic angle spinning (MAS) NMR structure determination is rapidly developing. We demonstrate a method to determine 1H−13C distances r CH with high precision from Lee−Goldburg cross-polarization (LG-CP) with fast MAS and continuous LG decoupling on uniformly 13C-enriched tyrosine·HCl. The sequence is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2000-04, Vol.122 (14), p.3465-3472
Hauptverfasser: Ladizhansky, V, Vega, S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3472
container_issue 14
container_start_page 3465
container_title Journal of the American Chemical Society
container_volume 122
creator Ladizhansky, V
Vega, S
description Magic angle spinning (MAS) NMR structure determination is rapidly developing. We demonstrate a method to determine 1H−13C distances r CH with high precision from Lee−Goldburg cross-polarization (LG-CP) with fast MAS and continuous LG decoupling on uniformly 13C-enriched tyrosine·HCl. The sequence is γ-encoded, and 1H−13C spin-pair interactions are predominantly responsible for the polarization transfer while proton spin diffusion is prevented. When the CP amplitudes are set to a sideband of the Hartmann−Hahn match condition, the LG-CP signal builds up in an oscillatory manner, reflecting coherent heteronuclear transfer. Its Fourier transform yields an effective 13C frequency response that is very sensitive to the surrounding protons. This 13C spectrum can be reproduced in detail with MAS Floquet simulations of the spin cluster, based on the positions of the nuclei from the neutron diffraction structure. It is symmetric around ω = 0 and yields two well-resolved maxima. Measurement of CH distances is straightforward, since the separation Δω /2π between the maxima for a single 1H−13C pair is related to the internuclear distance according to r CH = a(Δ ω/2π)-1/3, with a = 25.86 ± 0.01 Å Hz1/3. For the 1H directly bonded to a 13C, the magnetization is transferred in a short time of ∼100 μs. After this initial rapid transfer period, the COOH, OH, or NH3 that are not directly bonded to a 13C transfer magnetization over long distances. This offers an attractive route for collecting long-range distance constraints and for the characterization of intermolecular hydrogen bonding.
doi_str_mv 10.1021/ja992714j
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ja992714j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c833452744</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-975c37bca5fa3c86a4df7231aa97b1b0e23f2d0fdb9f0d58e99600b04225824f3</originalsourceid><addsrcrecordid>eNptkMtKAzEYhYMoWKsL3yAbQRejuUwmk2Wp2pFesRXBTchkknbGOlOSKegbuPYRfRIjla5cnf_Ax-H8B4BzjK4xIvimUkIQjuPqAHQwIyhimCSHoIMQIhFPE3oMTryvgo1Jijtg2oNj066aAtrGhVP5rSvrJcxMa1xTb_XaKAcvcfb9-YVp_wrelr5VtTYeljXMyuUKzjfGFHDcm8PJ-PEUHFm19ubsT7vg6f5u0c-i0XTw0O-NIkVF0kaCM015rhWziuo0UXFhOaFYKcFznCNDqCUFskUuLCpYaoRIEMpDacJSElvaBVe7XO0a752xcuPKN-U-JEbydwm5XyKw0Y4N1c37HlTuVSacciYXs7mcvAyGXDzP5DDwFzteaS-rZuvq8Mk_uT_R0mqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Method for Measuring Heteronuclear (1H−13C) Distances in High Speed MAS NMR</title><source>ACS Publications</source><creator>Ladizhansky, V ; Vega, S</creator><creatorcontrib>Ladizhansky, V ; Vega, S</creatorcontrib><description>Magic angle spinning (MAS) NMR structure determination is rapidly developing. We demonstrate a method to determine 1H−13C distances r CH with high precision from Lee−Goldburg cross-polarization (LG-CP) with fast MAS and continuous LG decoupling on uniformly 13C-enriched tyrosine·HCl. The sequence is γ-encoded, and 1H−13C spin-pair interactions are predominantly responsible for the polarization transfer while proton spin diffusion is prevented. When the CP amplitudes are set to a sideband of the Hartmann−Hahn match condition, the LG-CP signal builds up in an oscillatory manner, reflecting coherent heteronuclear transfer. Its Fourier transform yields an effective 13C frequency response that is very sensitive to the surrounding protons. This 13C spectrum can be reproduced in detail with MAS Floquet simulations of the spin cluster, based on the positions of the nuclei from the neutron diffraction structure. It is symmetric around ω = 0 and yields two well-resolved maxima. Measurement of CH distances is straightforward, since the separation Δω /2π between the maxima for a single 1H−13C pair is related to the internuclear distance according to r CH = a(Δ ω/2π)-1/3, with a = 25.86 ± 0.01 Å Hz1/3. For the 1H directly bonded to a 13C, the magnetization is transferred in a short time of ∼100 μs. After this initial rapid transfer period, the COOH, OH, or NH3 that are not directly bonded to a 13C transfer magnetization over long distances. This offers an attractive route for collecting long-range distance constraints and for the characterization of intermolecular hydrogen bonding.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja992714j</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2000-04, Vol.122 (14), p.3465-3472</ispartof><rights>Copyright © 2000 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-975c37bca5fa3c86a4df7231aa97b1b0e23f2d0fdb9f0d58e99600b04225824f3</citedby><cites>FETCH-LOGICAL-a396t-975c37bca5fa3c86a4df7231aa97b1b0e23f2d0fdb9f0d58e99600b04225824f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja992714j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja992714j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Ladizhansky, V</creatorcontrib><creatorcontrib>Vega, S</creatorcontrib><title>A Method for Measuring Heteronuclear (1H−13C) Distances in High Speed MAS NMR</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Magic angle spinning (MAS) NMR structure determination is rapidly developing. We demonstrate a method to determine 1H−13C distances r CH with high precision from Lee−Goldburg cross-polarization (LG-CP) with fast MAS and continuous LG decoupling on uniformly 13C-enriched tyrosine·HCl. The sequence is γ-encoded, and 1H−13C spin-pair interactions are predominantly responsible for the polarization transfer while proton spin diffusion is prevented. When the CP amplitudes are set to a sideband of the Hartmann−Hahn match condition, the LG-CP signal builds up in an oscillatory manner, reflecting coherent heteronuclear transfer. Its Fourier transform yields an effective 13C frequency response that is very sensitive to the surrounding protons. This 13C spectrum can be reproduced in detail with MAS Floquet simulations of the spin cluster, based on the positions of the nuclei from the neutron diffraction structure. It is symmetric around ω = 0 and yields two well-resolved maxima. Measurement of CH distances is straightforward, since the separation Δω /2π between the maxima for a single 1H−13C pair is related to the internuclear distance according to r CH = a(Δ ω/2π)-1/3, with a = 25.86 ± 0.01 Å Hz1/3. For the 1H directly bonded to a 13C, the magnetization is transferred in a short time of ∼100 μs. After this initial rapid transfer period, the COOH, OH, or NH3 that are not directly bonded to a 13C transfer magnetization over long distances. This offers an attractive route for collecting long-range distance constraints and for the characterization of intermolecular hydrogen bonding.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNptkMtKAzEYhYMoWKsL3yAbQRejuUwmk2Wp2pFesRXBTchkknbGOlOSKegbuPYRfRIjla5cnf_Ax-H8B4BzjK4xIvimUkIQjuPqAHQwIyhimCSHoIMQIhFPE3oMTryvgo1Jijtg2oNj066aAtrGhVP5rSvrJcxMa1xTb_XaKAcvcfb9-YVp_wrelr5VtTYeljXMyuUKzjfGFHDcm8PJ-PEUHFm19ubsT7vg6f5u0c-i0XTw0O-NIkVF0kaCM015rhWziuo0UXFhOaFYKcFznCNDqCUFskUuLCpYaoRIEMpDacJSElvaBVe7XO0a752xcuPKN-U-JEbydwm5XyKw0Y4N1c37HlTuVSacciYXs7mcvAyGXDzP5DDwFzteaS-rZuvq8Mk_uT_R0mqE</recordid><startdate>20000412</startdate><enddate>20000412</enddate><creator>Ladizhansky, V</creator><creator>Vega, S</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000412</creationdate><title>A Method for Measuring Heteronuclear (1H−13C) Distances in High Speed MAS NMR</title><author>Ladizhansky, V ; Vega, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-975c37bca5fa3c86a4df7231aa97b1b0e23f2d0fdb9f0d58e99600b04225824f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ladizhansky, V</creatorcontrib><creatorcontrib>Vega, S</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ladizhansky, V</au><au>Vega, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Measuring Heteronuclear (1H−13C) Distances in High Speed MAS NMR</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2000-04-12</date><risdate>2000</risdate><volume>122</volume><issue>14</issue><spage>3465</spage><epage>3472</epage><pages>3465-3472</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Magic angle spinning (MAS) NMR structure determination is rapidly developing. We demonstrate a method to determine 1H−13C distances r CH with high precision from Lee−Goldburg cross-polarization (LG-CP) with fast MAS and continuous LG decoupling on uniformly 13C-enriched tyrosine·HCl. The sequence is γ-encoded, and 1H−13C spin-pair interactions are predominantly responsible for the polarization transfer while proton spin diffusion is prevented. When the CP amplitudes are set to a sideband of the Hartmann−Hahn match condition, the LG-CP signal builds up in an oscillatory manner, reflecting coherent heteronuclear transfer. Its Fourier transform yields an effective 13C frequency response that is very sensitive to the surrounding protons. This 13C spectrum can be reproduced in detail with MAS Floquet simulations of the spin cluster, based on the positions of the nuclei from the neutron diffraction structure. It is symmetric around ω = 0 and yields two well-resolved maxima. Measurement of CH distances is straightforward, since the separation Δω /2π between the maxima for a single 1H−13C pair is related to the internuclear distance according to r CH = a(Δ ω/2π)-1/3, with a = 25.86 ± 0.01 Å Hz1/3. For the 1H directly bonded to a 13C, the magnetization is transferred in a short time of ∼100 μs. After this initial rapid transfer period, the COOH, OH, or NH3 that are not directly bonded to a 13C transfer magnetization over long distances. This offers an attractive route for collecting long-range distance constraints and for the characterization of intermolecular hydrogen bonding.</abstract><pub>American Chemical Society</pub><doi>10.1021/ja992714j</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2000-04, Vol.122 (14), p.3465-3472
issn 0002-7863
1520-5126
language eng
recordid cdi_crossref_primary_10_1021_ja992714j
source ACS Publications
title A Method for Measuring Heteronuclear (1H−13C) Distances in High Speed MAS NMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Measuring%20Heteronuclear%20(1H%E2%88%9213C)%20Distances%20in%20High%20Speed%20MAS%20NMR&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Ladizhansky,%20V&rft.date=2000-04-12&rft.volume=122&rft.issue=14&rft.spage=3465&rft.epage=3472&rft.pages=3465-3472&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja992714j&rft_dat=%3Cacs_cross%3Ec833452744%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true