Ionic Hydrogen Bonds in Bioenergetics. 3. Proton Transport in Membranes, Modeled by Ketone/Water Clusters

Hydrogen bond networks in protonated acetone/water clusters are stabilized by H3O+(Me2CO)2 centers, and the stabilizaton increases with further acetone content. For example, proton transfer from neat water (H2O)6H+ clusters to form mixed (Me2CO)3(H2O)3H+ clusters is exothermic by 80 kJ/mol (19 kcal/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 1998-07, Vol.120 (28), p.6980-6990
Hauptverfasser: Meot-Ner (Mautne, Michael, Scheiner, Steve, Yu, Wa On
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6990
container_issue 28
container_start_page 6980
container_title Journal of the American Chemical Society
container_volume 120
creator Meot-Ner (Mautne, Michael
Scheiner, Steve
Yu, Wa On
description Hydrogen bond networks in protonated acetone/water clusters are stabilized by H3O+(Me2CO)2 centers, and the stabilizaton increases with further acetone content. For example, proton transfer from neat water (H2O)6H+ clusters to form mixed (Me2CO)3(H2O)3H+ clusters is exothermic by 80 kJ/mol (19 kcal/mol), due to strong hydrogen bonding of the carbonyl groups; in a series of mixed clusters B3(H2O)3H+, the stability of the hydrogen bond network correlates with the proton affinities PA(B). In diketone models of adjacent peptide links, the proton is stabilized by internal hydrogen bonds between the carbonyl groups. The internal bonds can be significant, for example, 31 kJ/mol (7 kcal/mol) in (MeCOCH2CH2COMe)H+, but proton transfer through the internal bond has a high barrier. However, water molecules can bridge between the CO groups. In these bridges, the proton remains on an H3O+ center, in both acetone/water and diketone/water systems. With a further H2O molecule, the diketone/water cluster (MeCOCH2CH2COMe)(H2O)2H+ and diamide/water clusters form two-water H3O+···H2O bridges, which allow proton transfer between the CO groups with a small barrier of
doi_str_mv 10.1021/ja971663s
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ja971663s</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_KFRWKZN5_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-58927286df15fa7b7fcad190d524f6d2ab8ca0a0a182d63dc3948a76561263953</originalsourceid><addsrcrecordid>eNptkEtPAjEUhRujiYgu_AfduDBxoA_6mKUSEQIoUQyJm6Yz7ZBBaEk7JPLvLcGwMndx7km-nNx7ALjFqIMRwd2VzgXmnMYz0MKMoIxhws9BCyFEMiE5vQRXMa6S7RGJW6AeeVeXcLg3wS-tg0_emQjrtNTeOhuWtqnL2IG0A2fBN97BedAubn1oDtTUborkbXyAU2_s2hpY7OHYJtB2F7qxAfbXu5g0XoOLSq-jvfnTNvgcPM_7w2zy9jLqP04yTXLWZEzmRBDJTYVZpUUhqlIbnCPDSK_ihuhClhqlwZIYTk1J857UgjOeHqU5o21wf8wtg48x2EptQ73RYa8wUoeO1KmjxGZHtk4n_pxAHb4VF1QwNZ99qPHgfTH-emVKJv7uyOsyqpXfBZc--Sf3F8y_dKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ionic Hydrogen Bonds in Bioenergetics. 3. Proton Transport in Membranes, Modeled by Ketone/Water Clusters</title><source>ACS Publications</source><creator>Meot-Ner (Mautne, Michael ; Scheiner, Steve ; Yu, Wa On</creator><creatorcontrib>Meot-Ner (Mautne, Michael ; Scheiner, Steve ; Yu, Wa On</creatorcontrib><description>Hydrogen bond networks in protonated acetone/water clusters are stabilized by H3O+(Me2CO)2 centers, and the stabilizaton increases with further acetone content. For example, proton transfer from neat water (H2O)6H+ clusters to form mixed (Me2CO)3(H2O)3H+ clusters is exothermic by 80 kJ/mol (19 kcal/mol), due to strong hydrogen bonding of the carbonyl groups; in a series of mixed clusters B3(H2O)3H+, the stability of the hydrogen bond network correlates with the proton affinities PA(B). In diketone models of adjacent peptide links, the proton is stabilized by internal hydrogen bonds between the carbonyl groups. The internal bonds can be significant, for example, 31 kJ/mol (7 kcal/mol) in (MeCOCH2CH2COMe)H+, but proton transfer through the internal bond has a high barrier. However, water molecules can bridge between the CO groups. In these bridges, the proton remains on an H3O+ center, in both acetone/water and diketone/water systems. With a further H2O molecule, the diketone/water cluster (MeCOCH2CH2COMe)(H2O)2H+ and diamide/water clusters form two-water H3O+···H2O bridges, which allow proton transfer between the CO groups with a small barrier of &lt;12 kJ/mol (&lt;3 kcal/mol). The cluster models suggest several roles for hydrogen bonds in proton transport through membranes. (1) Ionic hydrogen bonds involving polar amide groups stabilize ions by up to 135 kJ/mol (32 kcal/mol) in clusters and can similarly stabilize ions in membrane water chains and enzyme centers. (2) The proton can remain on an H3O+ center and, therefore, remain delocalized and mobile in water chains, despite the stronger basicities of the surrounding amide groups. This effect results from electrostatic balancing of opposing peptide amide dipoles. (3) In the water chains, H3O+···H2O bridges between peptide amide groups can provide low-energy pathways for proton transport.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja971663s</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 1998-07, Vol.120 (28), p.6980-6990</ispartof><rights>Copyright © 1998 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-58927286df15fa7b7fcad190d524f6d2ab8ca0a0a182d63dc3948a76561263953</citedby><cites>FETCH-LOGICAL-a295t-58927286df15fa7b7fcad190d524f6d2ab8ca0a0a182d63dc3948a76561263953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja971663s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja971663s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Meot-Ner (Mautne, Michael</creatorcontrib><creatorcontrib>Scheiner, Steve</creatorcontrib><creatorcontrib>Yu, Wa On</creatorcontrib><title>Ionic Hydrogen Bonds in Bioenergetics. 3. Proton Transport in Membranes, Modeled by Ketone/Water Clusters</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Hydrogen bond networks in protonated acetone/water clusters are stabilized by H3O+(Me2CO)2 centers, and the stabilizaton increases with further acetone content. For example, proton transfer from neat water (H2O)6H+ clusters to form mixed (Me2CO)3(H2O)3H+ clusters is exothermic by 80 kJ/mol (19 kcal/mol), due to strong hydrogen bonding of the carbonyl groups; in a series of mixed clusters B3(H2O)3H+, the stability of the hydrogen bond network correlates with the proton affinities PA(B). In diketone models of adjacent peptide links, the proton is stabilized by internal hydrogen bonds between the carbonyl groups. The internal bonds can be significant, for example, 31 kJ/mol (7 kcal/mol) in (MeCOCH2CH2COMe)H+, but proton transfer through the internal bond has a high barrier. However, water molecules can bridge between the CO groups. In these bridges, the proton remains on an H3O+ center, in both acetone/water and diketone/water systems. With a further H2O molecule, the diketone/water cluster (MeCOCH2CH2COMe)(H2O)2H+ and diamide/water clusters form two-water H3O+···H2O bridges, which allow proton transfer between the CO groups with a small barrier of &lt;12 kJ/mol (&lt;3 kcal/mol). The cluster models suggest several roles for hydrogen bonds in proton transport through membranes. (1) Ionic hydrogen bonds involving polar amide groups stabilize ions by up to 135 kJ/mol (32 kcal/mol) in clusters and can similarly stabilize ions in membrane water chains and enzyme centers. (2) The proton can remain on an H3O+ center and, therefore, remain delocalized and mobile in water chains, despite the stronger basicities of the surrounding amide groups. This effect results from electrostatic balancing of opposing peptide amide dipoles. (3) In the water chains, H3O+···H2O bridges between peptide amide groups can provide low-energy pathways for proton transport.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNptkEtPAjEUhRujiYgu_AfduDBxoA_6mKUSEQIoUQyJm6Yz7ZBBaEk7JPLvLcGwMndx7km-nNx7ALjFqIMRwd2VzgXmnMYz0MKMoIxhws9BCyFEMiE5vQRXMa6S7RGJW6AeeVeXcLg3wS-tg0_emQjrtNTeOhuWtqnL2IG0A2fBN97BedAubn1oDtTUborkbXyAU2_s2hpY7OHYJtB2F7qxAfbXu5g0XoOLSq-jvfnTNvgcPM_7w2zy9jLqP04yTXLWZEzmRBDJTYVZpUUhqlIbnCPDSK_ihuhClhqlwZIYTk1J857UgjOeHqU5o21wf8wtg48x2EptQ73RYa8wUoeO1KmjxGZHtk4n_pxAHb4VF1QwNZ99qPHgfTH-emVKJv7uyOsyqpXfBZc--Sf3F8y_dKs</recordid><startdate>19980722</startdate><enddate>19980722</enddate><creator>Meot-Ner (Mautne, Michael</creator><creator>Scheiner, Steve</creator><creator>Yu, Wa On</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980722</creationdate><title>Ionic Hydrogen Bonds in Bioenergetics. 3. Proton Transport in Membranes, Modeled by Ketone/Water Clusters</title><author>Meot-Ner (Mautne, Michael ; Scheiner, Steve ; Yu, Wa On</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-58927286df15fa7b7fcad190d524f6d2ab8ca0a0a182d63dc3948a76561263953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meot-Ner (Mautne, Michael</creatorcontrib><creatorcontrib>Scheiner, Steve</creatorcontrib><creatorcontrib>Yu, Wa On</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meot-Ner (Mautne, Michael</au><au>Scheiner, Steve</au><au>Yu, Wa On</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic Hydrogen Bonds in Bioenergetics. 3. Proton Transport in Membranes, Modeled by Ketone/Water Clusters</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>1998-07-22</date><risdate>1998</risdate><volume>120</volume><issue>28</issue><spage>6980</spage><epage>6990</epage><pages>6980-6990</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Hydrogen bond networks in protonated acetone/water clusters are stabilized by H3O+(Me2CO)2 centers, and the stabilizaton increases with further acetone content. For example, proton transfer from neat water (H2O)6H+ clusters to form mixed (Me2CO)3(H2O)3H+ clusters is exothermic by 80 kJ/mol (19 kcal/mol), due to strong hydrogen bonding of the carbonyl groups; in a series of mixed clusters B3(H2O)3H+, the stability of the hydrogen bond network correlates with the proton affinities PA(B). In diketone models of adjacent peptide links, the proton is stabilized by internal hydrogen bonds between the carbonyl groups. The internal bonds can be significant, for example, 31 kJ/mol (7 kcal/mol) in (MeCOCH2CH2COMe)H+, but proton transfer through the internal bond has a high barrier. However, water molecules can bridge between the CO groups. In these bridges, the proton remains on an H3O+ center, in both acetone/water and diketone/water systems. With a further H2O molecule, the diketone/water cluster (MeCOCH2CH2COMe)(H2O)2H+ and diamide/water clusters form two-water H3O+···H2O bridges, which allow proton transfer between the CO groups with a small barrier of &lt;12 kJ/mol (&lt;3 kcal/mol). The cluster models suggest several roles for hydrogen bonds in proton transport through membranes. (1) Ionic hydrogen bonds involving polar amide groups stabilize ions by up to 135 kJ/mol (32 kcal/mol) in clusters and can similarly stabilize ions in membrane water chains and enzyme centers. (2) The proton can remain on an H3O+ center and, therefore, remain delocalized and mobile in water chains, despite the stronger basicities of the surrounding amide groups. This effect results from electrostatic balancing of opposing peptide amide dipoles. (3) In the water chains, H3O+···H2O bridges between peptide amide groups can provide low-energy pathways for proton transport.</abstract><pub>American Chemical Society</pub><doi>10.1021/ja971663s</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 1998-07, Vol.120 (28), p.6980-6990
issn 0002-7863
1520-5126
language eng
recordid cdi_crossref_primary_10_1021_ja971663s
source ACS Publications
title Ionic Hydrogen Bonds in Bioenergetics. 3. Proton Transport in Membranes, Modeled by Ketone/Water Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T07%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20Hydrogen%20Bonds%20in%20Bioenergetics.%203.%20Proton%20Transport%20in%20Membranes,%20Modeled%20by%20Ketone/Water%20Clusters&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Meot-Ner%20(Mautne,%20Michael&rft.date=1998-07-22&rft.volume=120&rft.issue=28&rft.spage=6980&rft.epage=6990&rft.pages=6980-6990&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja971663s&rft_dat=%3Cistex_cross%3Eark_67375_TPS_KFRWKZN5_8%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true