Salting in Peptides:  Conformationally Dependent Solubilities and Phase Behavior of a Tripeptide Zwitterion in Electrolyte Solution

The dielectrically consistent interaction site model theory is applied to a model system consisting of a zwitterion tripeptide of sequence Gly-Ala-Gly at infinite dilution in a solvent mixture of water and sodium chloride with only the central φ,ψ dihedrals for conformational degrees of freedom. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 1996-02, Vol.118 (5), p.1164-1172
Hauptverfasser: Perkyns, John S, Wang, Yiyang, Pettitt, B. Montgomery
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1172
container_issue 5
container_start_page 1164
container_title Journal of the American Chemical Society
container_volume 118
creator Perkyns, John S
Wang, Yiyang
Pettitt, B. Montgomery
description The dielectrically consistent interaction site model theory is applied to a model system consisting of a zwitterion tripeptide of sequence Gly-Ala-Gly at infinite dilution in a solvent mixture of water and sodium chloride with only the central φ,ψ dihedrals for conformational degrees of freedom. The peptide is found to be salted into solution by the cosolvent, with its solubility depending strongly on conformation of the central φ,ψ pair. The distribution of cosolvent relative to the bulk solvent mixture is examined and relatively little specific association is found. Instead, the ionic concentration around the peptide is increased, especially near the phase boundary, and the increased concentration extends up to eight solvent diameters into the bulk. The consequences of such an ionic distribution on thermodynamic measures of association are discussed. Similarities between this model system and the unusual solubility behavior of β-lactoglobulin found in experiments are shown. The molecular distributions calculated are found to be consistent with a separation of the solvent mixture into two non-miscible phases, one of which contains the solute and has a higher cosolvent concentration than the other. Since turbid solutions have been observed in the β-lactoglobulin system, it is suggested that a separation into two liquid phases could be common to both systems.
doi_str_mv 10.1021/ja952392t
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ja952392t</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_ZNGN19DS_Z</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-2dba33df733e124e509b8d19e0791602070296b0d6179aa47c5168a49e9b841f3</originalsourceid><addsrcrecordid>eNptkL1OwzAUhS0EEqUw8AZeGBgCtvNrNmhLQapKpZalS3ST3FCXEFe2C3RjYeA1eRJSgjox3XOlT9-RDiGnnF1wJvjlEmQofCncHunwUDAv5CLaJx3GmPDiJPIPyZG1y-YNRMI75HMKlVP1E1U1neDKqQLt1ffHF-3putTmBZzSNVTVhvZxhXWBtaNTXa0zVSmn0FKoCzpZgEV6gwt4VdpQXVKgM6NWrY_O35RzaBrRtmVQYe6MrjYOf03bgmNyUEJl8eTvdsnj7WDWu_NGD8P73vXIAyFD54kiA98vytj3kYsAQyazpOASWSx5xASLmZBRxoqIxxIgiPOQRwkEEhsu4KXfJeetNzfaWoNlujLqBcwm5Szd7pfu9mtYr2WVdfi-A8E8p1Hsx2E6m0zT-Xg45rLfhIY_a3nIbbrUa9PMZv_x_gAoD4EN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Salting in Peptides:  Conformationally Dependent Solubilities and Phase Behavior of a Tripeptide Zwitterion in Electrolyte Solution</title><source>ACS Publications</source><creator>Perkyns, John S ; Wang, Yiyang ; Pettitt, B. Montgomery</creator><creatorcontrib>Perkyns, John S ; Wang, Yiyang ; Pettitt, B. Montgomery</creatorcontrib><description>The dielectrically consistent interaction site model theory is applied to a model system consisting of a zwitterion tripeptide of sequence Gly-Ala-Gly at infinite dilution in a solvent mixture of water and sodium chloride with only the central φ,ψ dihedrals for conformational degrees of freedom. The peptide is found to be salted into solution by the cosolvent, with its solubility depending strongly on conformation of the central φ,ψ pair. The distribution of cosolvent relative to the bulk solvent mixture is examined and relatively little specific association is found. Instead, the ionic concentration around the peptide is increased, especially near the phase boundary, and the increased concentration extends up to eight solvent diameters into the bulk. The consequences of such an ionic distribution on thermodynamic measures of association are discussed. Similarities between this model system and the unusual solubility behavior of β-lactoglobulin found in experiments are shown. The molecular distributions calculated are found to be consistent with a separation of the solvent mixture into two non-miscible phases, one of which contains the solute and has a higher cosolvent concentration than the other. Since turbid solutions have been observed in the β-lactoglobulin system, it is suggested that a separation into two liquid phases could be common to both systems.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja952392t</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 1996-02, Vol.118 (5), p.1164-1172</ispartof><rights>Copyright © 1996 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-2dba33df733e124e509b8d19e0791602070296b0d6179aa47c5168a49e9b841f3</citedby><cites>FETCH-LOGICAL-a295t-2dba33df733e124e509b8d19e0791602070296b0d6179aa47c5168a49e9b841f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja952392t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja952392t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Perkyns, John S</creatorcontrib><creatorcontrib>Wang, Yiyang</creatorcontrib><creatorcontrib>Pettitt, B. Montgomery</creatorcontrib><title>Salting in Peptides:  Conformationally Dependent Solubilities and Phase Behavior of a Tripeptide Zwitterion in Electrolyte Solution</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The dielectrically consistent interaction site model theory is applied to a model system consisting of a zwitterion tripeptide of sequence Gly-Ala-Gly at infinite dilution in a solvent mixture of water and sodium chloride with only the central φ,ψ dihedrals for conformational degrees of freedom. The peptide is found to be salted into solution by the cosolvent, with its solubility depending strongly on conformation of the central φ,ψ pair. The distribution of cosolvent relative to the bulk solvent mixture is examined and relatively little specific association is found. Instead, the ionic concentration around the peptide is increased, especially near the phase boundary, and the increased concentration extends up to eight solvent diameters into the bulk. The consequences of such an ionic distribution on thermodynamic measures of association are discussed. Similarities between this model system and the unusual solubility behavior of β-lactoglobulin found in experiments are shown. The molecular distributions calculated are found to be consistent with a separation of the solvent mixture into two non-miscible phases, one of which contains the solute and has a higher cosolvent concentration than the other. Since turbid solutions have been observed in the β-lactoglobulin system, it is suggested that a separation into two liquid phases could be common to both systems.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNptkL1OwzAUhS0EEqUw8AZeGBgCtvNrNmhLQapKpZalS3ST3FCXEFe2C3RjYeA1eRJSgjox3XOlT9-RDiGnnF1wJvjlEmQofCncHunwUDAv5CLaJx3GmPDiJPIPyZG1y-YNRMI75HMKlVP1E1U1neDKqQLt1ffHF-3putTmBZzSNVTVhvZxhXWBtaNTXa0zVSmn0FKoCzpZgEV6gwt4VdpQXVKgM6NWrY_O35RzaBrRtmVQYe6MrjYOf03bgmNyUEJl8eTvdsnj7WDWu_NGD8P73vXIAyFD54kiA98vytj3kYsAQyazpOASWSx5xASLmZBRxoqIxxIgiPOQRwkEEhsu4KXfJeetNzfaWoNlujLqBcwm5Szd7pfu9mtYr2WVdfi-A8E8p1Hsx2E6m0zT-Xg45rLfhIY_a3nIbbrUa9PMZv_x_gAoD4EN</recordid><startdate>19960207</startdate><enddate>19960207</enddate><creator>Perkyns, John S</creator><creator>Wang, Yiyang</creator><creator>Pettitt, B. Montgomery</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960207</creationdate><title>Salting in Peptides:  Conformationally Dependent Solubilities and Phase Behavior of a Tripeptide Zwitterion in Electrolyte Solution</title><author>Perkyns, John S ; Wang, Yiyang ; Pettitt, B. Montgomery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-2dba33df733e124e509b8d19e0791602070296b0d6179aa47c5168a49e9b841f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkyns, John S</creatorcontrib><creatorcontrib>Wang, Yiyang</creatorcontrib><creatorcontrib>Pettitt, B. Montgomery</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkyns, John S</au><au>Wang, Yiyang</au><au>Pettitt, B. Montgomery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salting in Peptides:  Conformationally Dependent Solubilities and Phase Behavior of a Tripeptide Zwitterion in Electrolyte Solution</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>1996-02-07</date><risdate>1996</risdate><volume>118</volume><issue>5</issue><spage>1164</spage><epage>1172</epage><pages>1164-1172</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The dielectrically consistent interaction site model theory is applied to a model system consisting of a zwitterion tripeptide of sequence Gly-Ala-Gly at infinite dilution in a solvent mixture of water and sodium chloride with only the central φ,ψ dihedrals for conformational degrees of freedom. The peptide is found to be salted into solution by the cosolvent, with its solubility depending strongly on conformation of the central φ,ψ pair. The distribution of cosolvent relative to the bulk solvent mixture is examined and relatively little specific association is found. Instead, the ionic concentration around the peptide is increased, especially near the phase boundary, and the increased concentration extends up to eight solvent diameters into the bulk. The consequences of such an ionic distribution on thermodynamic measures of association are discussed. Similarities between this model system and the unusual solubility behavior of β-lactoglobulin found in experiments are shown. The molecular distributions calculated are found to be consistent with a separation of the solvent mixture into two non-miscible phases, one of which contains the solute and has a higher cosolvent concentration than the other. Since turbid solutions have been observed in the β-lactoglobulin system, it is suggested that a separation into two liquid phases could be common to both systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/ja952392t</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 1996-02, Vol.118 (5), p.1164-1172
issn 0002-7863
1520-5126
language eng
recordid cdi_crossref_primary_10_1021_ja952392t
source ACS Publications
title Salting in Peptides:  Conformationally Dependent Solubilities and Phase Behavior of a Tripeptide Zwitterion in Electrolyte Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A12%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salting%20in%20Peptides:%E2%80%89%20Conformationally%20Dependent%20Solubilities%20and%20Phase%20Behavior%20of%20a%20Tripeptide%20Zwitterion%20in%20Electrolyte%20Solution&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Perkyns,%20John%20S&rft.date=1996-02-07&rft.volume=118&rft.issue=5&rft.spage=1164&rft.epage=1172&rft.pages=1164-1172&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja952392t&rft_dat=%3Cistex_cross%3Eark_67375_TPS_ZNGN19DS_Z%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true