Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing
We report the construction of periodic DNA nanoribbons (DNRs) by a modified DNA origami method. Unlike the conventional DNA origami, the DNR scaffold is a long, single-stranded DNA of tandem repeats, originating from the rolling circular amplification (RCA). Consequently, the number of folding stapl...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2015-03, Vol.137 (11), p.3844-3851 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3851 |
---|---|
container_issue | 11 |
container_start_page | 3844 |
container_title | Journal of the American Chemical Society |
container_volume | 137 |
creator | Chen, Gang Liu, Di He, Chunbai Gannett, Theodore R Lin, Wenbin Weizmann, Yossi |
description | We report the construction of periodic DNA nanoribbons (DNRs) by a modified DNA origami method. Unlike the conventional DNA origami, the DNR scaffold is a long, single-stranded DNA of tandem repeats, originating from the rolling circular amplification (RCA). Consequently, the number of folding staple strands tremendously decreases from hundreds to a few, which makes the DNR production scalable and cost-effective, thus potentially removing the barrier for practical applications of DNA nanostructures. Moreover, the co-replicational synthesis of scaffold and staple strands by RCA-based enzymatic reactions allows the generation of DNRs in one pot, further reducing the cost. Due to their unique periodicity, rigidity, and high aspect ratio, DNRs are efficiently internalized into cells and escape from endosomal entrapment, making them potential nanocarriers for imaging agents and biological therapeutics. We demonstrated proof-of-concept applications of DNRs as an intracellular pH sensor and an efficient small interfering RNA delivery vehicle in human cancer cells. |
doi_str_mv | 10.1021/ja512665z |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ja512665z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c287394506</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-c0fc262c3a2e6b36435251c31df494d75e80b31c4d58ec72615f99cff91b35f43</originalsourceid><addsrcrecordid>eNptkEFPwjAYhhujEUQP_gHTiwcP037t2m1HAggkBE3Q89J1rZaMlrTjAL_eEZSTpy_vmydvvjwI3QN5BkLhZS05UCH44QL1gVOSHOMl6hNCaJLlgvXQTYzrLqY0h2vUo1xQClneR-XEHfYb2VqFV3vXfutoI_YGv-tgfd214-UQL6XzwVaVdxEbH_DctUEq3TS7Rga8neGVdtG6LyxdjafaabyyjXaqq27RlZFN1He_d4A-Xycfo1myeJvOR8NFIlkObaKIUVRQxSTVomIiZZxyUAxqkxZpnXGdk4qBSmuea5VRAdwUhTKmgIpxk7IBejrtquBjDNqU22A3MuxLIOVRUnmW1LEPJ3a7qza6PpN_Vjrg8QRIFcu13wXXvf7P0A8hoW3t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Chen, Gang ; Liu, Di ; He, Chunbai ; Gannett, Theodore R ; Lin, Wenbin ; Weizmann, Yossi</creator><creatorcontrib>Chen, Gang ; Liu, Di ; He, Chunbai ; Gannett, Theodore R ; Lin, Wenbin ; Weizmann, Yossi</creatorcontrib><description>We report the construction of periodic DNA nanoribbons (DNRs) by a modified DNA origami method. Unlike the conventional DNA origami, the DNR scaffold is a long, single-stranded DNA of tandem repeats, originating from the rolling circular amplification (RCA). Consequently, the number of folding staple strands tremendously decreases from hundreds to a few, which makes the DNR production scalable and cost-effective, thus potentially removing the barrier for practical applications of DNA nanostructures. Moreover, the co-replicational synthesis of scaffold and staple strands by RCA-based enzymatic reactions allows the generation of DNRs in one pot, further reducing the cost. Due to their unique periodicity, rigidity, and high aspect ratio, DNRs are efficiently internalized into cells and escape from endosomal entrapment, making them potential nanocarriers for imaging agents and biological therapeutics. We demonstrated proof-of-concept applications of DNRs as an intracellular pH sensor and an efficient small interfering RNA delivery vehicle in human cancer cells.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja512665z</identifier><identifier>PMID: 25622178</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques ; DNA - chemical synthesis ; Gene Silencing ; Hydrogen-Ion Concentration ; Microscopy, Atomic Force ; Nanostructures - chemistry ; Nucleic Acid Amplification Techniques ; Nucleic Acid Conformation</subject><ispartof>Journal of the American Chemical Society, 2015-03, Vol.137 (11), p.3844-3851</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-c0fc262c3a2e6b36435251c31df494d75e80b31c4d58ec72615f99cff91b35f43</citedby><cites>FETCH-LOGICAL-a381t-c0fc262c3a2e6b36435251c31df494d75e80b31c4d58ec72615f99cff91b35f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja512665z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja512665z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25622178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>He, Chunbai</creatorcontrib><creatorcontrib>Gannett, Theodore R</creatorcontrib><creatorcontrib>Lin, Wenbin</creatorcontrib><creatorcontrib>Weizmann, Yossi</creatorcontrib><title>Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We report the construction of periodic DNA nanoribbons (DNRs) by a modified DNA origami method. Unlike the conventional DNA origami, the DNR scaffold is a long, single-stranded DNA of tandem repeats, originating from the rolling circular amplification (RCA). Consequently, the number of folding staple strands tremendously decreases from hundreds to a few, which makes the DNR production scalable and cost-effective, thus potentially removing the barrier for practical applications of DNA nanostructures. Moreover, the co-replicational synthesis of scaffold and staple strands by RCA-based enzymatic reactions allows the generation of DNRs in one pot, further reducing the cost. Due to their unique periodicity, rigidity, and high aspect ratio, DNRs are efficiently internalized into cells and escape from endosomal entrapment, making them potential nanocarriers for imaging agents and biological therapeutics. We demonstrated proof-of-concept applications of DNRs as an intracellular pH sensor and an efficient small interfering RNA delivery vehicle in human cancer cells.</description><subject>Biosensing Techniques</subject><subject>DNA - chemical synthesis</subject><subject>Gene Silencing</subject><subject>Hydrogen-Ion Concentration</subject><subject>Microscopy, Atomic Force</subject><subject>Nanostructures - chemistry</subject><subject>Nucleic Acid Amplification Techniques</subject><subject>Nucleic Acid Conformation</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEFPwjAYhhujEUQP_gHTiwcP037t2m1HAggkBE3Q89J1rZaMlrTjAL_eEZSTpy_vmydvvjwI3QN5BkLhZS05UCH44QL1gVOSHOMl6hNCaJLlgvXQTYzrLqY0h2vUo1xQClneR-XEHfYb2VqFV3vXfutoI_YGv-tgfd214-UQL6XzwVaVdxEbH_DctUEq3TS7Rga8neGVdtG6LyxdjafaabyyjXaqq27RlZFN1He_d4A-Xycfo1myeJvOR8NFIlkObaKIUVRQxSTVomIiZZxyUAxqkxZpnXGdk4qBSmuea5VRAdwUhTKmgIpxk7IBejrtquBjDNqU22A3MuxLIOVRUnmW1LEPJ3a7qza6PpN_Vjrg8QRIFcu13wXXvf7P0A8hoW3t</recordid><startdate>20150325</startdate><enddate>20150325</enddate><creator>Chen, Gang</creator><creator>Liu, Di</creator><creator>He, Chunbai</creator><creator>Gannett, Theodore R</creator><creator>Lin, Wenbin</creator><creator>Weizmann, Yossi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150325</creationdate><title>Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing</title><author>Chen, Gang ; Liu, Di ; He, Chunbai ; Gannett, Theodore R ; Lin, Wenbin ; Weizmann, Yossi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-c0fc262c3a2e6b36435251c31df494d75e80b31c4d58ec72615f99cff91b35f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biosensing Techniques</topic><topic>DNA - chemical synthesis</topic><topic>Gene Silencing</topic><topic>Hydrogen-Ion Concentration</topic><topic>Microscopy, Atomic Force</topic><topic>Nanostructures - chemistry</topic><topic>Nucleic Acid Amplification Techniques</topic><topic>Nucleic Acid Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>He, Chunbai</creatorcontrib><creatorcontrib>Gannett, Theodore R</creatorcontrib><creatorcontrib>Lin, Wenbin</creatorcontrib><creatorcontrib>Weizmann, Yossi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gang</au><au>Liu, Di</au><au>He, Chunbai</au><au>Gannett, Theodore R</au><au>Lin, Wenbin</au><au>Weizmann, Yossi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-03-25</date><risdate>2015</risdate><volume>137</volume><issue>11</issue><spage>3844</spage><epage>3851</epage><pages>3844-3851</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>We report the construction of periodic DNA nanoribbons (DNRs) by a modified DNA origami method. Unlike the conventional DNA origami, the DNR scaffold is a long, single-stranded DNA of tandem repeats, originating from the rolling circular amplification (RCA). Consequently, the number of folding staple strands tremendously decreases from hundreds to a few, which makes the DNR production scalable and cost-effective, thus potentially removing the barrier for practical applications of DNA nanostructures. Moreover, the co-replicational synthesis of scaffold and staple strands by RCA-based enzymatic reactions allows the generation of DNRs in one pot, further reducing the cost. Due to their unique periodicity, rigidity, and high aspect ratio, DNRs are efficiently internalized into cells and escape from endosomal entrapment, making them potential nanocarriers for imaging agents and biological therapeutics. We demonstrated proof-of-concept applications of DNRs as an intracellular pH sensor and an efficient small interfering RNA delivery vehicle in human cancer cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25622178</pmid><doi>10.1021/ja512665z</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2015-03, Vol.137 (11), p.3844-3851 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ja512665z |
source | MEDLINE; American Chemical Society Journals |
subjects | Biosensing Techniques DNA - chemical synthesis Gene Silencing Hydrogen-Ion Concentration Microscopy, Atomic Force Nanostructures - chemistry Nucleic Acid Amplification Techniques Nucleic Acid Conformation |
title | Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzymatic%20Synthesis%20of%20Periodic%20DNA%20Nanoribbons%20for%20Intracellular%20pH%20Sensing%20and%20Gene%20Silencing&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chen,%20Gang&rft.date=2015-03-25&rft.volume=137&rft.issue=11&rft.spage=3844&rft.epage=3851&rft.pages=3844-3851&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja512665z&rft_dat=%3Cacs_cross%3Ec287394506%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25622178&rfr_iscdi=true |