Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing

We report the construction of periodic DNA nanoribbons (DNRs) by a modified DNA origami method. Unlike the conventional DNA origami, the DNR scaffold is a long, single-stranded DNA of tandem repeats, originating from the rolling circular amplification (RCA). Consequently, the number of folding stapl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2015-03, Vol.137 (11), p.3844-3851
Hauptverfasser: Chen, Gang, Liu, Di, He, Chunbai, Gannett, Theodore R, Lin, Wenbin, Weizmann, Yossi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3851
container_issue 11
container_start_page 3844
container_title Journal of the American Chemical Society
container_volume 137
creator Chen, Gang
Liu, Di
He, Chunbai
Gannett, Theodore R
Lin, Wenbin
Weizmann, Yossi
description We report the construction of periodic DNA nanoribbons (DNRs) by a modified DNA origami method. Unlike the conventional DNA origami, the DNR scaffold is a long, single-stranded DNA of tandem repeats, originating from the rolling circular amplification (RCA). Consequently, the number of folding staple strands tremendously decreases from hundreds to a few, which makes the DNR production scalable and cost-effective, thus potentially removing the barrier for practical applications of DNA nanostructures. Moreover, the co-replicational synthesis of scaffold and staple strands by RCA-based enzymatic reactions allows the generation of DNRs in one pot, further reducing the cost. Due to their unique periodicity, rigidity, and high aspect ratio, DNRs are efficiently internalized into cells and escape from endosomal entrapment, making them potential nanocarriers for imaging agents and biological therapeutics. We demonstrated proof-of-concept applications of DNRs as an intracellular pH sensor and an efficient small interfering RNA delivery vehicle in human cancer cells.
doi_str_mv 10.1021/ja512665z
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ja512665z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c287394506</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-c0fc262c3a2e6b36435251c31df494d75e80b31c4d58ec72615f99cff91b35f43</originalsourceid><addsrcrecordid>eNptkEFPwjAYhhujEUQP_gHTiwcP037t2m1HAggkBE3Q89J1rZaMlrTjAL_eEZSTpy_vmydvvjwI3QN5BkLhZS05UCH44QL1gVOSHOMl6hNCaJLlgvXQTYzrLqY0h2vUo1xQClneR-XEHfYb2VqFV3vXfutoI_YGv-tgfd214-UQL6XzwVaVdxEbH_DctUEq3TS7Rga8neGVdtG6LyxdjafaabyyjXaqq27RlZFN1He_d4A-Xycfo1myeJvOR8NFIlkObaKIUVRQxSTVomIiZZxyUAxqkxZpnXGdk4qBSmuea5VRAdwUhTKmgIpxk7IBejrtquBjDNqU22A3MuxLIOVRUnmW1LEPJ3a7qza6PpN_Vjrg8QRIFcu13wXXvf7P0A8hoW3t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Chen, Gang ; Liu, Di ; He, Chunbai ; Gannett, Theodore R ; Lin, Wenbin ; Weizmann, Yossi</creator><creatorcontrib>Chen, Gang ; Liu, Di ; He, Chunbai ; Gannett, Theodore R ; Lin, Wenbin ; Weizmann, Yossi</creatorcontrib><description>We report the construction of periodic DNA nanoribbons (DNRs) by a modified DNA origami method. Unlike the conventional DNA origami, the DNR scaffold is a long, single-stranded DNA of tandem repeats, originating from the rolling circular amplification (RCA). Consequently, the number of folding staple strands tremendously decreases from hundreds to a few, which makes the DNR production scalable and cost-effective, thus potentially removing the barrier for practical applications of DNA nanostructures. Moreover, the co-replicational synthesis of scaffold and staple strands by RCA-based enzymatic reactions allows the generation of DNRs in one pot, further reducing the cost. Due to their unique periodicity, rigidity, and high aspect ratio, DNRs are efficiently internalized into cells and escape from endosomal entrapment, making them potential nanocarriers for imaging agents and biological therapeutics. We demonstrated proof-of-concept applications of DNRs as an intracellular pH sensor and an efficient small interfering RNA delivery vehicle in human cancer cells.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja512665z</identifier><identifier>PMID: 25622178</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques ; DNA - chemical synthesis ; Gene Silencing ; Hydrogen-Ion Concentration ; Microscopy, Atomic Force ; Nanostructures - chemistry ; Nucleic Acid Amplification Techniques ; Nucleic Acid Conformation</subject><ispartof>Journal of the American Chemical Society, 2015-03, Vol.137 (11), p.3844-3851</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-c0fc262c3a2e6b36435251c31df494d75e80b31c4d58ec72615f99cff91b35f43</citedby><cites>FETCH-LOGICAL-a381t-c0fc262c3a2e6b36435251c31df494d75e80b31c4d58ec72615f99cff91b35f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja512665z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja512665z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25622178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>He, Chunbai</creatorcontrib><creatorcontrib>Gannett, Theodore R</creatorcontrib><creatorcontrib>Lin, Wenbin</creatorcontrib><creatorcontrib>Weizmann, Yossi</creatorcontrib><title>Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We report the construction of periodic DNA nanoribbons (DNRs) by a modified DNA origami method. Unlike the conventional DNA origami, the DNR scaffold is a long, single-stranded DNA of tandem repeats, originating from the rolling circular amplification (RCA). Consequently, the number of folding staple strands tremendously decreases from hundreds to a few, which makes the DNR production scalable and cost-effective, thus potentially removing the barrier for practical applications of DNA nanostructures. Moreover, the co-replicational synthesis of scaffold and staple strands by RCA-based enzymatic reactions allows the generation of DNRs in one pot, further reducing the cost. Due to their unique periodicity, rigidity, and high aspect ratio, DNRs are efficiently internalized into cells and escape from endosomal entrapment, making them potential nanocarriers for imaging agents and biological therapeutics. We demonstrated proof-of-concept applications of DNRs as an intracellular pH sensor and an efficient small interfering RNA delivery vehicle in human cancer cells.</description><subject>Biosensing Techniques</subject><subject>DNA - chemical synthesis</subject><subject>Gene Silencing</subject><subject>Hydrogen-Ion Concentration</subject><subject>Microscopy, Atomic Force</subject><subject>Nanostructures - chemistry</subject><subject>Nucleic Acid Amplification Techniques</subject><subject>Nucleic Acid Conformation</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEFPwjAYhhujEUQP_gHTiwcP037t2m1HAggkBE3Q89J1rZaMlrTjAL_eEZSTpy_vmydvvjwI3QN5BkLhZS05UCH44QL1gVOSHOMl6hNCaJLlgvXQTYzrLqY0h2vUo1xQClneR-XEHfYb2VqFV3vXfutoI_YGv-tgfd214-UQL6XzwVaVdxEbH_DctUEq3TS7Rga8neGVdtG6LyxdjafaabyyjXaqq27RlZFN1He_d4A-Xycfo1myeJvOR8NFIlkObaKIUVRQxSTVomIiZZxyUAxqkxZpnXGdk4qBSmuea5VRAdwUhTKmgIpxk7IBejrtquBjDNqU22A3MuxLIOVRUnmW1LEPJ3a7qza6PpN_Vjrg8QRIFcu13wXXvf7P0A8hoW3t</recordid><startdate>20150325</startdate><enddate>20150325</enddate><creator>Chen, Gang</creator><creator>Liu, Di</creator><creator>He, Chunbai</creator><creator>Gannett, Theodore R</creator><creator>Lin, Wenbin</creator><creator>Weizmann, Yossi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150325</creationdate><title>Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing</title><author>Chen, Gang ; Liu, Di ; He, Chunbai ; Gannett, Theodore R ; Lin, Wenbin ; Weizmann, Yossi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-c0fc262c3a2e6b36435251c31df494d75e80b31c4d58ec72615f99cff91b35f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biosensing Techniques</topic><topic>DNA - chemical synthesis</topic><topic>Gene Silencing</topic><topic>Hydrogen-Ion Concentration</topic><topic>Microscopy, Atomic Force</topic><topic>Nanostructures - chemistry</topic><topic>Nucleic Acid Amplification Techniques</topic><topic>Nucleic Acid Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>He, Chunbai</creatorcontrib><creatorcontrib>Gannett, Theodore R</creatorcontrib><creatorcontrib>Lin, Wenbin</creatorcontrib><creatorcontrib>Weizmann, Yossi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gang</au><au>Liu, Di</au><au>He, Chunbai</au><au>Gannett, Theodore R</au><au>Lin, Wenbin</au><au>Weizmann, Yossi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-03-25</date><risdate>2015</risdate><volume>137</volume><issue>11</issue><spage>3844</spage><epage>3851</epage><pages>3844-3851</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>We report the construction of periodic DNA nanoribbons (DNRs) by a modified DNA origami method. Unlike the conventional DNA origami, the DNR scaffold is a long, single-stranded DNA of tandem repeats, originating from the rolling circular amplification (RCA). Consequently, the number of folding staple strands tremendously decreases from hundreds to a few, which makes the DNR production scalable and cost-effective, thus potentially removing the barrier for practical applications of DNA nanostructures. Moreover, the co-replicational synthesis of scaffold and staple strands by RCA-based enzymatic reactions allows the generation of DNRs in one pot, further reducing the cost. Due to their unique periodicity, rigidity, and high aspect ratio, DNRs are efficiently internalized into cells and escape from endosomal entrapment, making them potential nanocarriers for imaging agents and biological therapeutics. We demonstrated proof-of-concept applications of DNRs as an intracellular pH sensor and an efficient small interfering RNA delivery vehicle in human cancer cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25622178</pmid><doi>10.1021/ja512665z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2015-03, Vol.137 (11), p.3844-3851
issn 0002-7863
1520-5126
language eng
recordid cdi_crossref_primary_10_1021_ja512665z
source MEDLINE; American Chemical Society Journals
subjects Biosensing Techniques
DNA - chemical synthesis
Gene Silencing
Hydrogen-Ion Concentration
Microscopy, Atomic Force
Nanostructures - chemistry
Nucleic Acid Amplification Techniques
Nucleic Acid Conformation
title Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzymatic%20Synthesis%20of%20Periodic%20DNA%20Nanoribbons%20for%20Intracellular%20pH%20Sensing%20and%20Gene%20Silencing&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chen,%20Gang&rft.date=2015-03-25&rft.volume=137&rft.issue=11&rft.spage=3844&rft.epage=3851&rft.pages=3844-3851&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja512665z&rft_dat=%3Cacs_cross%3Ec287394506%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25622178&rfr_iscdi=true