Elucidating the Breathing of the Metal–Organic Framework MIL-53(Sc) with ab Initio Molecular Dynamics Simulations and in Situ X‑ray Powder Diffraction Experiments
Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal–organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100–623 K and adsorption of CO2 at 0–0.9 bar at 196 K. The method has for the first time bee...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2013-10, Vol.135 (42), p.15763-15773 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15773 |
---|---|
container_issue | 42 |
container_start_page | 15763 |
container_title | Journal of the American Chemical Society |
container_volume | 135 |
creator | Chen, Linjiang Mowat, John P. S Fairen-Jimenez, David Morrison, Carole A Thompson, Stephen P Wright, Paul A Düren, Tina |
description | Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal–organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100–623 K and adsorption of CO2 at 0–0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P21/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids. |
doi_str_mv | 10.1021/ja403453g |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ja403453g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b028422623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-1ab08984f2e739c93151c217ddca2a73035941c77cababfa8d6495d1dc25f0e63</originalsourceid><addsrcrecordid>eNptkE1u2zAUhIkgQe2mXfQCBTcB4oUa_kiWtEwcpzVgwwXcAt0JTyRl05Eog6TgeJcrFLlDDuaTlI6TrLp6mHkfBoNB6Asl3yhh9GoNMeFxwpcnqE8TRqKEsuEp6hNCWJRmQ95DH51bBxmzjH5APcZTTllM-uh5XHdCS_DaLLFfKXxjFfjVQbXVizFTHur949PcLsFoge8sNGrb2ns8m0yjhF8uxABvtV9hKPHEaK9bPGtrJboaLL7dGWi0cHihm2CEp3EYjMTaBMt3-M_-8a-FHf7ZbqUKvK4qC-LA4fHDRlndKOPdJ3RWQe3U59d7jn7fjX-NfkTT-ffJ6HoaAaepjyiUJMuzuGIq5bnIOU2oYDSVUgCDlBOe5DEVaSqghLKCTA7jPJFUCpZURA35ORocc4VtnbOqKjahAdhdQUlx2Lp43zqwX4_spisbJd_Jt3EDcHEEQLhi3XbWhOr_CfoHhPyJHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elucidating the Breathing of the Metal–Organic Framework MIL-53(Sc) with ab Initio Molecular Dynamics Simulations and in Situ X‑ray Powder Diffraction Experiments</title><source>ACS Publications</source><creator>Chen, Linjiang ; Mowat, John P. S ; Fairen-Jimenez, David ; Morrison, Carole A ; Thompson, Stephen P ; Wright, Paul A ; Düren, Tina</creator><creatorcontrib>Chen, Linjiang ; Mowat, John P. S ; Fairen-Jimenez, David ; Morrison, Carole A ; Thompson, Stephen P ; Wright, Paul A ; Düren, Tina</creatorcontrib><description>Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal–organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100–623 K and adsorption of CO2 at 0–0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P21/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja403453g</identifier><identifier>PMID: 23731240</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2013-10, Vol.135 (42), p.15763-15773</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-1ab08984f2e739c93151c217ddca2a73035941c77cababfa8d6495d1dc25f0e63</citedby><cites>FETCH-LOGICAL-a317t-1ab08984f2e739c93151c217ddca2a73035941c77cababfa8d6495d1dc25f0e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja403453g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja403453g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23731240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Linjiang</creatorcontrib><creatorcontrib>Mowat, John P. S</creatorcontrib><creatorcontrib>Fairen-Jimenez, David</creatorcontrib><creatorcontrib>Morrison, Carole A</creatorcontrib><creatorcontrib>Thompson, Stephen P</creatorcontrib><creatorcontrib>Wright, Paul A</creatorcontrib><creatorcontrib>Düren, Tina</creatorcontrib><title>Elucidating the Breathing of the Metal–Organic Framework MIL-53(Sc) with ab Initio Molecular Dynamics Simulations and in Situ X‑ray Powder Diffraction Experiments</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal–organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100–623 K and adsorption of CO2 at 0–0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P21/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkE1u2zAUhIkgQe2mXfQCBTcB4oUa_kiWtEwcpzVgwwXcAt0JTyRl05Eog6TgeJcrFLlDDuaTlI6TrLp6mHkfBoNB6Asl3yhh9GoNMeFxwpcnqE8TRqKEsuEp6hNCWJRmQ95DH51bBxmzjH5APcZTTllM-uh5XHdCS_DaLLFfKXxjFfjVQbXVizFTHur949PcLsFoge8sNGrb2ns8m0yjhF8uxABvtV9hKPHEaK9bPGtrJboaLL7dGWi0cHihm2CEp3EYjMTaBMt3-M_-8a-FHf7ZbqUKvK4qC-LA4fHDRlndKOPdJ3RWQe3U59d7jn7fjX-NfkTT-ffJ6HoaAaepjyiUJMuzuGIq5bnIOU2oYDSVUgCDlBOe5DEVaSqghLKCTA7jPJFUCpZURA35ORocc4VtnbOqKjahAdhdQUlx2Lp43zqwX4_spisbJd_Jt3EDcHEEQLhi3XbWhOr_CfoHhPyJHg</recordid><startdate>20131023</startdate><enddate>20131023</enddate><creator>Chen, Linjiang</creator><creator>Mowat, John P. S</creator><creator>Fairen-Jimenez, David</creator><creator>Morrison, Carole A</creator><creator>Thompson, Stephen P</creator><creator>Wright, Paul A</creator><creator>Düren, Tina</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131023</creationdate><title>Elucidating the Breathing of the Metal–Organic Framework MIL-53(Sc) with ab Initio Molecular Dynamics Simulations and in Situ X‑ray Powder Diffraction Experiments</title><author>Chen, Linjiang ; Mowat, John P. S ; Fairen-Jimenez, David ; Morrison, Carole A ; Thompson, Stephen P ; Wright, Paul A ; Düren, Tina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-1ab08984f2e739c93151c217ddca2a73035941c77cababfa8d6495d1dc25f0e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Linjiang</creatorcontrib><creatorcontrib>Mowat, John P. S</creatorcontrib><creatorcontrib>Fairen-Jimenez, David</creatorcontrib><creatorcontrib>Morrison, Carole A</creatorcontrib><creatorcontrib>Thompson, Stephen P</creatorcontrib><creatorcontrib>Wright, Paul A</creatorcontrib><creatorcontrib>Düren, Tina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Linjiang</au><au>Mowat, John P. S</au><au>Fairen-Jimenez, David</au><au>Morrison, Carole A</au><au>Thompson, Stephen P</au><au>Wright, Paul A</au><au>Düren, Tina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Breathing of the Metal–Organic Framework MIL-53(Sc) with ab Initio Molecular Dynamics Simulations and in Situ X‑ray Powder Diffraction Experiments</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2013-10-23</date><risdate>2013</risdate><volume>135</volume><issue>42</issue><spage>15763</spage><epage>15773</epage><pages>15763-15773</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal–organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100–623 K and adsorption of CO2 at 0–0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P21/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23731240</pmid><doi>10.1021/ja403453g</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2013-10, Vol.135 (42), p.15763-15773 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ja403453g |
source | ACS Publications |
title | Elucidating the Breathing of the Metal–Organic Framework MIL-53(Sc) with ab Initio Molecular Dynamics Simulations and in Situ X‑ray Powder Diffraction Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Breathing%20of%20the%20Metal%E2%80%93Organic%20Framework%20MIL-53(Sc)%20with%20ab%20Initio%20Molecular%20Dynamics%20Simulations%20and%20in%20Situ%20X%E2%80%91ray%20Powder%20Diffraction%20Experiments&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chen,%20Linjiang&rft.date=2013-10-23&rft.volume=135&rft.issue=42&rft.spage=15763&rft.epage=15773&rft.pages=15763-15773&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja403453g&rft_dat=%3Cacs_cross%3Eb028422623%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23731240&rfr_iscdi=true |