Cell-Permeable Peptide Nucleic Acid Designed to Bind to the 5‘-Untranslated Region of E-cadherin Transcript Induces Potent and Sequence-Specific Antisense Effects
Establishing a general and effective method for regulating gene expression in mammalian systems is important for many aspects of biological and biomedical research. Herein we report the antisense activities of a cell-permeable, guanidine-based peptide nucleic acid (PNA) called GPNA. We show that a G...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2006-12, Vol.128 (50), p.16104-16112 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Establishing a general and effective method for regulating gene expression in mammalian systems is important for many aspects of biological and biomedical research. Herein we report the antisense activities of a cell-permeable, guanidine-based peptide nucleic acid (PNA) called GPNA. We show that a GPNA oligomer designed to bind to the transcriptional start-site of human E-cadherin gene induces potent and sequence-specific antisense effects and is less toxic to the cells than the corresponding PNA−polyarginine conjugate. GPNA confers its silencing effect by blocking protein translation. The findings reported in this study provide a molecular framework for designing the next generation cell-permeable nucleic acid mimics for regulating gene expression in live cells and intact organisms. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja063383v |