Control of Redox Transitions and Oxygen Species Binding in Mn Centers by Biologically Significant Ligands; Model Studies with [Mn]-bacteriochlorophyll a
Mn-superoxide dismutase (Mn-SOD), which protects the cell from the toxic potential of superoxide radicals (O2 -•), is the only type of SOD which resides in eukaryotic mitochondria. Up-to-date, the exact catalytic mechanism of the enzyme and the relationship between substrate moieties and the ligands...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2003-07, Vol.125 (29), p.8852-8861 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8861 |
---|---|
container_issue | 29 |
container_start_page | 8852 |
container_title | Journal of the American Chemical Society |
container_volume | 125 |
creator | Ashur, Idan Brandis, Alex Greenwald, Moshe Vakrat-Haglili, Yahel Rosenbach-Belkin, Varda Scheer, Hugo Scherz, Avigdor |
description | Mn-superoxide dismutase (Mn-SOD), which protects the cell from the toxic potential of superoxide radicals (O2 -•), is the only type of SOD which resides in eukaryotic mitochondria. Up-to-date, the exact catalytic mechanism of the enzyme and the relationship between substrate moieties and the ligands within the active site microenvironment are still not resolved. Here, we set out to explore the possible involvement of hydroperoxyl radicals (•OOH) in the catalytic dismutaion by following the interplay of MnIII/MnII redox transitions, ligands binding, and evolution or consumption of superoxide radical, using a new model system. The model system encompassed an Mn atom chelated by a bacteriochlorophyll allomer macrocycle (BChl) in aerated aprotic media that contain residual water. The redox states of the Mn ion were monitored by the Q y electronic transitions at 774 and 825 nm for [MnII]- and [MnIII]-BChl, respectively (Geskes, C.; Hartwich, G.; Scheer, H.; Mantele, W.; Heinze, J. J. Am. Chem. Soc. 1995, 117, 7776) and confirmed by electron spin resonance spectroscopy. Evolution of •OOH radicals was monitored by the ESR spin-trap technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The experimental data suggest that the [Mn]-BChl forms a (HO-)[MnIII]-BChl(OOH) complex upon solvation. Spectrophotometeric titrations with tetrabutylamonnium acetate (TBAA) and 1-methylimidazole (1-MeIm) together with ESI-MS measurements indicated the formation of a 1:1 complex with [Mn]-BChl for both ligands. The coordination of ligands at low concentrations to [MnIII]-BChl induced a release of a •OOH radical and a [MnIII]-BChl → [MnII]-BChl transition at higher concentrations. The estimated equilibrium constants for the total redox reaction are 1.9 × 104 ± 1 × 103 M-1 and 12.3 ± 0.6 M-1 for TBAA and 1-MeIm, respectively. The profound difference between the equilibrium constants agrees with the suggested key role of the ligand's basicity in the process. A direct interaction of superoxide radicals with [MnIII]-BChl in a KO2 acetonitrile (AN) solution also resulted in [MnIII]-BChl → [MnII]-BChl transition. Cumulatively, our data show that the MnIII center encourages the protonation of the O2 -• radical in an aprotic environment containing residual water molecules, while promoting its oxidation in the presence of basic ligands. Similar coordination and stabilization of the •OOH radical by the Mn center may be key steps in the enzymatic dismutation of superoxide radicals by Mn-SOD. |
doi_str_mv | 10.1021/ja030170m |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ja030170m</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_FBNVTN5X_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-1601da1f9de944555c31afad04536f26243c397327d213a74a703dd60b9200383</originalsourceid><addsrcrecordid>eNptkMtqGzEUQEVpaNy0i_5A0KaLLKbRY2Y0IqvENG3ATkrtlkIpQpY0YzmyZKQx9fxJPzcKNvGmK3G5h8PVAeADRp8wIvhyJRFFmKH1KzDCFUFFhUn9GowQQqRgTU1PwduUVnksSYPfgFNMmpqUDRmBf-Pg-xgcDC38bnTYwXmUPtneBp-g9Bo-7IbOeDjbGGVNgjfWa-s7aD2cejg2vjcxwcWQF8GFzirp3ABntvO2zYPv4cR22ZOu4DRo4-Cs3-pn0V_bL-Hvqf9TLKTKEhvU0oUYNsvBOSjfgZNWumTeH94z8OP283z8tZg8fLkbX08KSRnvC1wjrCVuuTa8LKuqUhTLVmpUVrRuSf4lVZQzSpgmmEpWSoao1jVacIIQbegZuNh7VQwpRdOKTbRrGQeBkXiuK17qZvZ8z262i7XRR_KQMwMfD4BMOUSbUyqbjlzJOWk4z1yx52zqze5lL-OjqBlllZh_m4nbm_uf8_vql5gcvVIlsQrb6HOS_xz4BM4tniA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control of Redox Transitions and Oxygen Species Binding in Mn Centers by Biologically Significant Ligands; Model Studies with [Mn]-bacteriochlorophyll a</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Ashur, Idan ; Brandis, Alex ; Greenwald, Moshe ; Vakrat-Haglili, Yahel ; Rosenbach-Belkin, Varda ; Scheer, Hugo ; Scherz, Avigdor</creator><creatorcontrib>Ashur, Idan ; Brandis, Alex ; Greenwald, Moshe ; Vakrat-Haglili, Yahel ; Rosenbach-Belkin, Varda ; Scheer, Hugo ; Scherz, Avigdor</creatorcontrib><description>Mn-superoxide dismutase (Mn-SOD), which protects the cell from the toxic potential of superoxide radicals (O2 -•), is the only type of SOD which resides in eukaryotic mitochondria. Up-to-date, the exact catalytic mechanism of the enzyme and the relationship between substrate moieties and the ligands within the active site microenvironment are still not resolved. Here, we set out to explore the possible involvement of hydroperoxyl radicals (•OOH) in the catalytic dismutaion by following the interplay of MnIII/MnII redox transitions, ligands binding, and evolution or consumption of superoxide radical, using a new model system. The model system encompassed an Mn atom chelated by a bacteriochlorophyll allomer macrocycle (BChl) in aerated aprotic media that contain residual water. The redox states of the Mn ion were monitored by the Q y electronic transitions at 774 and 825 nm for [MnII]- and [MnIII]-BChl, respectively (Geskes, C.; Hartwich, G.; Scheer, H.; Mantele, W.; Heinze, J. J. Am. Chem. Soc. 1995, 117, 7776) and confirmed by electron spin resonance spectroscopy. Evolution of •OOH radicals was monitored by the ESR spin-trap technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The experimental data suggest that the [Mn]-BChl forms a (HO-)[MnIII]-BChl(OOH) complex upon solvation. Spectrophotometeric titrations with tetrabutylamonnium acetate (TBAA) and 1-methylimidazole (1-MeIm) together with ESI-MS measurements indicated the formation of a 1:1 complex with [Mn]-BChl for both ligands. The coordination of ligands at low concentrations to [MnIII]-BChl induced a release of a •OOH radical and a [MnIII]-BChl → [MnII]-BChl transition at higher concentrations. The estimated equilibrium constants for the total redox reaction are 1.9 × 104 ± 1 × 103 M-1 and 12.3 ± 0.6 M-1 for TBAA and 1-MeIm, respectively. The profound difference between the equilibrium constants agrees with the suggested key role of the ligand's basicity in the process. A direct interaction of superoxide radicals with [MnIII]-BChl in a KO2 acetonitrile (AN) solution also resulted in [MnIII]-BChl → [MnII]-BChl transition. Cumulatively, our data show that the MnIII center encourages the protonation of the O2 -• radical in an aprotic environment containing residual water molecules, while promoting its oxidation in the presence of basic ligands. Similar coordination and stabilization of the •OOH radical by the Mn center may be key steps in the enzymatic dismutation of superoxide radicals by Mn-SOD.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja030170m</identifier><identifier>PMID: 12862482</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical, structural and metabolic biochemistry ; Bacteriochlorophyll A - chemistry ; Bacteriochlorophyll A - metabolism ; Biological and medical sciences ; Circular Dichroism ; Enzymes and enzyme inhibitors ; Fundamental and applied biological sciences. Psychology ; General aspects, investigation methods ; Hydroxyl Radical - chemistry ; Hydroxyl Radical - metabolism ; Kinetics ; Ligands ; Manganese - chemistry ; Manganese - metabolism ; Oxidation-Reduction ; Reactive Oxygen Species - chemistry ; Reactive Oxygen Species - metabolism ; Spectrometry, Mass, Electrospray Ionization ; Spin Trapping ; Superoxide Dismutase - chemistry ; Superoxide Dismutase - metabolism</subject><ispartof>Journal of the American Chemical Society, 2003-07, Vol.125 (29), p.8852-8861</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-1601da1f9de944555c31afad04536f26243c397327d213a74a703dd60b9200383</citedby><cites>FETCH-LOGICAL-a379t-1601da1f9de944555c31afad04536f26243c397327d213a74a703dd60b9200383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja030170m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja030170m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14992899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12862482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashur, Idan</creatorcontrib><creatorcontrib>Brandis, Alex</creatorcontrib><creatorcontrib>Greenwald, Moshe</creatorcontrib><creatorcontrib>Vakrat-Haglili, Yahel</creatorcontrib><creatorcontrib>Rosenbach-Belkin, Varda</creatorcontrib><creatorcontrib>Scheer, Hugo</creatorcontrib><creatorcontrib>Scherz, Avigdor</creatorcontrib><title>Control of Redox Transitions and Oxygen Species Binding in Mn Centers by Biologically Significant Ligands; Model Studies with [Mn]-bacteriochlorophyll a</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Mn-superoxide dismutase (Mn-SOD), which protects the cell from the toxic potential of superoxide radicals (O2 -•), is the only type of SOD which resides in eukaryotic mitochondria. Up-to-date, the exact catalytic mechanism of the enzyme and the relationship between substrate moieties and the ligands within the active site microenvironment are still not resolved. Here, we set out to explore the possible involvement of hydroperoxyl radicals (•OOH) in the catalytic dismutaion by following the interplay of MnIII/MnII redox transitions, ligands binding, and evolution or consumption of superoxide radical, using a new model system. The model system encompassed an Mn atom chelated by a bacteriochlorophyll allomer macrocycle (BChl) in aerated aprotic media that contain residual water. The redox states of the Mn ion were monitored by the Q y electronic transitions at 774 and 825 nm for [MnII]- and [MnIII]-BChl, respectively (Geskes, C.; Hartwich, G.; Scheer, H.; Mantele, W.; Heinze, J. J. Am. Chem. Soc. 1995, 117, 7776) and confirmed by electron spin resonance spectroscopy. Evolution of •OOH radicals was monitored by the ESR spin-trap technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The experimental data suggest that the [Mn]-BChl forms a (HO-)[MnIII]-BChl(OOH) complex upon solvation. Spectrophotometeric titrations with tetrabutylamonnium acetate (TBAA) and 1-methylimidazole (1-MeIm) together with ESI-MS measurements indicated the formation of a 1:1 complex with [Mn]-BChl for both ligands. The coordination of ligands at low concentrations to [MnIII]-BChl induced a release of a •OOH radical and a [MnIII]-BChl → [MnII]-BChl transition at higher concentrations. The estimated equilibrium constants for the total redox reaction are 1.9 × 104 ± 1 × 103 M-1 and 12.3 ± 0.6 M-1 for TBAA and 1-MeIm, respectively. The profound difference between the equilibrium constants agrees with the suggested key role of the ligand's basicity in the process. A direct interaction of superoxide radicals with [MnIII]-BChl in a KO2 acetonitrile (AN) solution also resulted in [MnIII]-BChl → [MnII]-BChl transition. Cumulatively, our data show that the MnIII center encourages the protonation of the O2 -• radical in an aprotic environment containing residual water molecules, while promoting its oxidation in the presence of basic ligands. Similar coordination and stabilization of the •OOH radical by the Mn center may be key steps in the enzymatic dismutation of superoxide radicals by Mn-SOD.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Bacteriochlorophyll A - chemistry</subject><subject>Bacteriochlorophyll A - metabolism</subject><subject>Biological and medical sciences</subject><subject>Circular Dichroism</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects, investigation methods</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Hydroxyl Radical - metabolism</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Manganese - chemistry</subject><subject>Manganese - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Reactive Oxygen Species - chemistry</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Spin Trapping</subject><subject>Superoxide Dismutase - chemistry</subject><subject>Superoxide Dismutase - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtqGzEUQEVpaNy0i_5A0KaLLKbRY2Y0IqvENG3ATkrtlkIpQpY0YzmyZKQx9fxJPzcKNvGmK3G5h8PVAeADRp8wIvhyJRFFmKH1KzDCFUFFhUn9GowQQqRgTU1PwduUVnksSYPfgFNMmpqUDRmBf-Pg-xgcDC38bnTYwXmUPtneBp-g9Bo-7IbOeDjbGGVNgjfWa-s7aD2cejg2vjcxwcWQF8GFzirp3ABntvO2zYPv4cR22ZOu4DRo4-Cs3-pn0V_bL-Hvqf9TLKTKEhvU0oUYNsvBOSjfgZNWumTeH94z8OP283z8tZg8fLkbX08KSRnvC1wjrCVuuTa8LKuqUhTLVmpUVrRuSf4lVZQzSpgmmEpWSoao1jVacIIQbegZuNh7VQwpRdOKTbRrGQeBkXiuK17qZvZ8z262i7XRR_KQMwMfD4BMOUSbUyqbjlzJOWk4z1yx52zqze5lL-OjqBlllZh_m4nbm_uf8_vql5gcvVIlsQrb6HOS_xz4BM4tniA</recordid><startdate>20030723</startdate><enddate>20030723</enddate><creator>Ashur, Idan</creator><creator>Brandis, Alex</creator><creator>Greenwald, Moshe</creator><creator>Vakrat-Haglili, Yahel</creator><creator>Rosenbach-Belkin, Varda</creator><creator>Scheer, Hugo</creator><creator>Scherz, Avigdor</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030723</creationdate><title>Control of Redox Transitions and Oxygen Species Binding in Mn Centers by Biologically Significant Ligands; Model Studies with [Mn]-bacteriochlorophyll a</title><author>Ashur, Idan ; Brandis, Alex ; Greenwald, Moshe ; Vakrat-Haglili, Yahel ; Rosenbach-Belkin, Varda ; Scheer, Hugo ; Scherz, Avigdor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-1601da1f9de944555c31afad04536f26243c397327d213a74a703dd60b9200383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Bacteriochlorophyll A - chemistry</topic><topic>Bacteriochlorophyll A - metabolism</topic><topic>Biological and medical sciences</topic><topic>Circular Dichroism</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects, investigation methods</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Hydroxyl Radical - metabolism</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Manganese - chemistry</topic><topic>Manganese - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Reactive Oxygen Species - chemistry</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Spin Trapping</topic><topic>Superoxide Dismutase - chemistry</topic><topic>Superoxide Dismutase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashur, Idan</creatorcontrib><creatorcontrib>Brandis, Alex</creatorcontrib><creatorcontrib>Greenwald, Moshe</creatorcontrib><creatorcontrib>Vakrat-Haglili, Yahel</creatorcontrib><creatorcontrib>Rosenbach-Belkin, Varda</creatorcontrib><creatorcontrib>Scheer, Hugo</creatorcontrib><creatorcontrib>Scherz, Avigdor</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashur, Idan</au><au>Brandis, Alex</au><au>Greenwald, Moshe</au><au>Vakrat-Haglili, Yahel</au><au>Rosenbach-Belkin, Varda</au><au>Scheer, Hugo</au><au>Scherz, Avigdor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Redox Transitions and Oxygen Species Binding in Mn Centers by Biologically Significant Ligands; Model Studies with [Mn]-bacteriochlorophyll a</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2003-07-23</date><risdate>2003</risdate><volume>125</volume><issue>29</issue><spage>8852</spage><epage>8861</epage><pages>8852-8861</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>Mn-superoxide dismutase (Mn-SOD), which protects the cell from the toxic potential of superoxide radicals (O2 -•), is the only type of SOD which resides in eukaryotic mitochondria. Up-to-date, the exact catalytic mechanism of the enzyme and the relationship between substrate moieties and the ligands within the active site microenvironment are still not resolved. Here, we set out to explore the possible involvement of hydroperoxyl radicals (•OOH) in the catalytic dismutaion by following the interplay of MnIII/MnII redox transitions, ligands binding, and evolution or consumption of superoxide radical, using a new model system. The model system encompassed an Mn atom chelated by a bacteriochlorophyll allomer macrocycle (BChl) in aerated aprotic media that contain residual water. The redox states of the Mn ion were monitored by the Q y electronic transitions at 774 and 825 nm for [MnII]- and [MnIII]-BChl, respectively (Geskes, C.; Hartwich, G.; Scheer, H.; Mantele, W.; Heinze, J. J. Am. Chem. Soc. 1995, 117, 7776) and confirmed by electron spin resonance spectroscopy. Evolution of •OOH radicals was monitored by the ESR spin-trap technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The experimental data suggest that the [Mn]-BChl forms a (HO-)[MnIII]-BChl(OOH) complex upon solvation. Spectrophotometeric titrations with tetrabutylamonnium acetate (TBAA) and 1-methylimidazole (1-MeIm) together with ESI-MS measurements indicated the formation of a 1:1 complex with [Mn]-BChl for both ligands. The coordination of ligands at low concentrations to [MnIII]-BChl induced a release of a •OOH radical and a [MnIII]-BChl → [MnII]-BChl transition at higher concentrations. The estimated equilibrium constants for the total redox reaction are 1.9 × 104 ± 1 × 103 M-1 and 12.3 ± 0.6 M-1 for TBAA and 1-MeIm, respectively. The profound difference between the equilibrium constants agrees with the suggested key role of the ligand's basicity in the process. A direct interaction of superoxide radicals with [MnIII]-BChl in a KO2 acetonitrile (AN) solution also resulted in [MnIII]-BChl → [MnII]-BChl transition. Cumulatively, our data show that the MnIII center encourages the protonation of the O2 -• radical in an aprotic environment containing residual water molecules, while promoting its oxidation in the presence of basic ligands. Similar coordination and stabilization of the •OOH radical by the Mn center may be key steps in the enzymatic dismutation of superoxide radicals by Mn-SOD.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12862482</pmid><doi>10.1021/ja030170m</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2003-07, Vol.125 (29), p.8852-8861 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ja030170m |
source | MEDLINE; American Chemical Society Journals |
subjects | Analytical, structural and metabolic biochemistry Bacteriochlorophyll A - chemistry Bacteriochlorophyll A - metabolism Biological and medical sciences Circular Dichroism Enzymes and enzyme inhibitors Fundamental and applied biological sciences. Psychology General aspects, investigation methods Hydroxyl Radical - chemistry Hydroxyl Radical - metabolism Kinetics Ligands Manganese - chemistry Manganese - metabolism Oxidation-Reduction Reactive Oxygen Species - chemistry Reactive Oxygen Species - metabolism Spectrometry, Mass, Electrospray Ionization Spin Trapping Superoxide Dismutase - chemistry Superoxide Dismutase - metabolism |
title | Control of Redox Transitions and Oxygen Species Binding in Mn Centers by Biologically Significant Ligands; Model Studies with [Mn]-bacteriochlorophyll a |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Redox%20Transitions%20and%20Oxygen%20Species%20Binding%20in%20Mn%20Centers%20by%20Biologically%20Significant%20Ligands;%20Model%20Studies%20with%20%5BMn%5D-bacteriochlorophyll%20a&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Ashur,%20Idan&rft.date=2003-07-23&rft.volume=125&rft.issue=29&rft.spage=8852&rft.epage=8861&rft.pages=8852-8861&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja030170m&rft_dat=%3Cistex_cross%3Eark_67375_TPS_FBNVTN5X_L%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/12862482&rfr_iscdi=true |