Control of Redox Transitions and Oxygen Species Binding in Mn Centers by Biologically Significant Ligands; Model Studies with [Mn]-bacteriochlorophyll a

Mn-superoxide dismutase (Mn-SOD), which protects the cell from the toxic potential of superoxide radicals (O2 -•), is the only type of SOD which resides in eukaryotic mitochondria. Up-to-date, the exact catalytic mechanism of the enzyme and the relationship between substrate moieties and the ligands...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2003-07, Vol.125 (29), p.8852-8861
Hauptverfasser: Ashur, Idan, Brandis, Alex, Greenwald, Moshe, Vakrat-Haglili, Yahel, Rosenbach-Belkin, Varda, Scheer, Hugo, Scherz, Avigdor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8861
container_issue 29
container_start_page 8852
container_title Journal of the American Chemical Society
container_volume 125
creator Ashur, Idan
Brandis, Alex
Greenwald, Moshe
Vakrat-Haglili, Yahel
Rosenbach-Belkin, Varda
Scheer, Hugo
Scherz, Avigdor
description Mn-superoxide dismutase (Mn-SOD), which protects the cell from the toxic potential of superoxide radicals (O2 -•), is the only type of SOD which resides in eukaryotic mitochondria. Up-to-date, the exact catalytic mechanism of the enzyme and the relationship between substrate moieties and the ligands within the active site microenvironment are still not resolved. Here, we set out to explore the possible involvement of hydroperoxyl radicals (•OOH) in the catalytic dismutaion by following the interplay of MnIII/MnII redox transitions, ligands binding, and evolution or consumption of superoxide radical, using a new model system. The model system encompassed an Mn atom chelated by a bacteriochlorophyll allomer macrocycle (BChl) in aerated aprotic media that contain residual water. The redox states of the Mn ion were monitored by the Q y electronic transitions at 774 and 825 nm for [MnII]- and [MnIII]-BChl, respectively (Geskes, C.; Hartwich, G.; Scheer, H.; Mantele, W.; Heinze, J. J. Am. Chem. Soc. 1995, 117, 7776) and confirmed by electron spin resonance spectroscopy. Evolution of •OOH radicals was monitored by the ESR spin-trap technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The experimental data suggest that the [Mn]-BChl forms a (HO-)[MnIII]-BChl(OOH) complex upon solvation. Spectrophotometeric titrations with tetrabutylamonnium acetate (TBAA) and 1-methylimidazole (1-MeIm) together with ESI-MS measurements indicated the formation of a 1:1 complex with [Mn]-BChl for both ligands. The coordination of ligands at low concentrations to [MnIII]-BChl induced a release of a •OOH radical and a [MnIII]-BChl → [MnII]-BChl transition at higher concentrations. The estimated equilibrium constants for the total redox reaction are 1.9 × 104 ± 1 × 103 M-1 and 12.3 ± 0.6 M-1 for TBAA and 1-MeIm, respectively. The profound difference between the equilibrium constants agrees with the suggested key role of the ligand's basicity in the process. A direct interaction of superoxide radicals with [MnIII]-BChl in a KO2 acetonitrile (AN) solution also resulted in [MnIII]-BChl → [MnII]-BChl transition. Cumulatively, our data show that the MnIII center encourages the protonation of the O2 -• radical in an aprotic environment containing residual water molecules, while promoting its oxidation in the presence of basic ligands. Similar coordination and stabilization of the •OOH radical by the Mn center may be key steps in the enzymatic dismutation of superoxide radicals by Mn-SOD.
doi_str_mv 10.1021/ja030170m
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ja030170m</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_FBNVTN5X_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-1601da1f9de944555c31afad04536f26243c397327d213a74a703dd60b9200383</originalsourceid><addsrcrecordid>eNptkMtqGzEUQEVpaNy0i_5A0KaLLKbRY2Y0IqvENG3ATkrtlkIpQpY0YzmyZKQx9fxJPzcKNvGmK3G5h8PVAeADRp8wIvhyJRFFmKH1KzDCFUFFhUn9GowQQqRgTU1PwduUVnksSYPfgFNMmpqUDRmBf-Pg-xgcDC38bnTYwXmUPtneBp-g9Bo-7IbOeDjbGGVNgjfWa-s7aD2cejg2vjcxwcWQF8GFzirp3ABntvO2zYPv4cR22ZOu4DRo4-Cs3-pn0V_bL-Hvqf9TLKTKEhvU0oUYNsvBOSjfgZNWumTeH94z8OP283z8tZg8fLkbX08KSRnvC1wjrCVuuTa8LKuqUhTLVmpUVrRuSf4lVZQzSpgmmEpWSoao1jVacIIQbegZuNh7VQwpRdOKTbRrGQeBkXiuK17qZvZ8z262i7XRR_KQMwMfD4BMOUSbUyqbjlzJOWk4z1yx52zqze5lL-OjqBlllZh_m4nbm_uf8_vql5gcvVIlsQrb6HOS_xz4BM4tniA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control of Redox Transitions and Oxygen Species Binding in Mn Centers by Biologically Significant Ligands; Model Studies with [Mn]-bacteriochlorophyll a</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Ashur, Idan ; Brandis, Alex ; Greenwald, Moshe ; Vakrat-Haglili, Yahel ; Rosenbach-Belkin, Varda ; Scheer, Hugo ; Scherz, Avigdor</creator><creatorcontrib>Ashur, Idan ; Brandis, Alex ; Greenwald, Moshe ; Vakrat-Haglili, Yahel ; Rosenbach-Belkin, Varda ; Scheer, Hugo ; Scherz, Avigdor</creatorcontrib><description>Mn-superoxide dismutase (Mn-SOD), which protects the cell from the toxic potential of superoxide radicals (O2 -•), is the only type of SOD which resides in eukaryotic mitochondria. Up-to-date, the exact catalytic mechanism of the enzyme and the relationship between substrate moieties and the ligands within the active site microenvironment are still not resolved. Here, we set out to explore the possible involvement of hydroperoxyl radicals (•OOH) in the catalytic dismutaion by following the interplay of MnIII/MnII redox transitions, ligands binding, and evolution or consumption of superoxide radical, using a new model system. The model system encompassed an Mn atom chelated by a bacteriochlorophyll allomer macrocycle (BChl) in aerated aprotic media that contain residual water. The redox states of the Mn ion were monitored by the Q y electronic transitions at 774 and 825 nm for [MnII]- and [MnIII]-BChl, respectively (Geskes, C.; Hartwich, G.; Scheer, H.; Mantele, W.; Heinze, J. J. Am. Chem. Soc. 1995, 117, 7776) and confirmed by electron spin resonance spectroscopy. Evolution of •OOH radicals was monitored by the ESR spin-trap technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The experimental data suggest that the [Mn]-BChl forms a (HO-)[MnIII]-BChl(OOH) complex upon solvation. Spectrophotometeric titrations with tetrabutylamonnium acetate (TBAA) and 1-methylimidazole (1-MeIm) together with ESI-MS measurements indicated the formation of a 1:1 complex with [Mn]-BChl for both ligands. The coordination of ligands at low concentrations to [MnIII]-BChl induced a release of a •OOH radical and a [MnIII]-BChl → [MnII]-BChl transition at higher concentrations. The estimated equilibrium constants for the total redox reaction are 1.9 × 104 ± 1 × 103 M-1 and 12.3 ± 0.6 M-1 for TBAA and 1-MeIm, respectively. The profound difference between the equilibrium constants agrees with the suggested key role of the ligand's basicity in the process. A direct interaction of superoxide radicals with [MnIII]-BChl in a KO2 acetonitrile (AN) solution also resulted in [MnIII]-BChl → [MnII]-BChl transition. Cumulatively, our data show that the MnIII center encourages the protonation of the O2 -• radical in an aprotic environment containing residual water molecules, while promoting its oxidation in the presence of basic ligands. Similar coordination and stabilization of the •OOH radical by the Mn center may be key steps in the enzymatic dismutation of superoxide radicals by Mn-SOD.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja030170m</identifier><identifier>PMID: 12862482</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical, structural and metabolic biochemistry ; Bacteriochlorophyll A - chemistry ; Bacteriochlorophyll A - metabolism ; Biological and medical sciences ; Circular Dichroism ; Enzymes and enzyme inhibitors ; Fundamental and applied biological sciences. Psychology ; General aspects, investigation methods ; Hydroxyl Radical - chemistry ; Hydroxyl Radical - metabolism ; Kinetics ; Ligands ; Manganese - chemistry ; Manganese - metabolism ; Oxidation-Reduction ; Reactive Oxygen Species - chemistry ; Reactive Oxygen Species - metabolism ; Spectrometry, Mass, Electrospray Ionization ; Spin Trapping ; Superoxide Dismutase - chemistry ; Superoxide Dismutase - metabolism</subject><ispartof>Journal of the American Chemical Society, 2003-07, Vol.125 (29), p.8852-8861</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-1601da1f9de944555c31afad04536f26243c397327d213a74a703dd60b9200383</citedby><cites>FETCH-LOGICAL-a379t-1601da1f9de944555c31afad04536f26243c397327d213a74a703dd60b9200383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja030170m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja030170m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14992899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12862482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashur, Idan</creatorcontrib><creatorcontrib>Brandis, Alex</creatorcontrib><creatorcontrib>Greenwald, Moshe</creatorcontrib><creatorcontrib>Vakrat-Haglili, Yahel</creatorcontrib><creatorcontrib>Rosenbach-Belkin, Varda</creatorcontrib><creatorcontrib>Scheer, Hugo</creatorcontrib><creatorcontrib>Scherz, Avigdor</creatorcontrib><title>Control of Redox Transitions and Oxygen Species Binding in Mn Centers by Biologically Significant Ligands; Model Studies with [Mn]-bacteriochlorophyll a</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Mn-superoxide dismutase (Mn-SOD), which protects the cell from the toxic potential of superoxide radicals (O2 -•), is the only type of SOD which resides in eukaryotic mitochondria. Up-to-date, the exact catalytic mechanism of the enzyme and the relationship between substrate moieties and the ligands within the active site microenvironment are still not resolved. Here, we set out to explore the possible involvement of hydroperoxyl radicals (•OOH) in the catalytic dismutaion by following the interplay of MnIII/MnII redox transitions, ligands binding, and evolution or consumption of superoxide radical, using a new model system. The model system encompassed an Mn atom chelated by a bacteriochlorophyll allomer macrocycle (BChl) in aerated aprotic media that contain residual water. The redox states of the Mn ion were monitored by the Q y electronic transitions at 774 and 825 nm for [MnII]- and [MnIII]-BChl, respectively (Geskes, C.; Hartwich, G.; Scheer, H.; Mantele, W.; Heinze, J. J. Am. Chem. Soc. 1995, 117, 7776) and confirmed by electron spin resonance spectroscopy. Evolution of •OOH radicals was monitored by the ESR spin-trap technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The experimental data suggest that the [Mn]-BChl forms a (HO-)[MnIII]-BChl(OOH) complex upon solvation. Spectrophotometeric titrations with tetrabutylamonnium acetate (TBAA) and 1-methylimidazole (1-MeIm) together with ESI-MS measurements indicated the formation of a 1:1 complex with [Mn]-BChl for both ligands. The coordination of ligands at low concentrations to [MnIII]-BChl induced a release of a •OOH radical and a [MnIII]-BChl → [MnII]-BChl transition at higher concentrations. The estimated equilibrium constants for the total redox reaction are 1.9 × 104 ± 1 × 103 M-1 and 12.3 ± 0.6 M-1 for TBAA and 1-MeIm, respectively. The profound difference between the equilibrium constants agrees with the suggested key role of the ligand's basicity in the process. A direct interaction of superoxide radicals with [MnIII]-BChl in a KO2 acetonitrile (AN) solution also resulted in [MnIII]-BChl → [MnII]-BChl transition. Cumulatively, our data show that the MnIII center encourages the protonation of the O2 -• radical in an aprotic environment containing residual water molecules, while promoting its oxidation in the presence of basic ligands. Similar coordination and stabilization of the •OOH radical by the Mn center may be key steps in the enzymatic dismutation of superoxide radicals by Mn-SOD.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Bacteriochlorophyll A - chemistry</subject><subject>Bacteriochlorophyll A - metabolism</subject><subject>Biological and medical sciences</subject><subject>Circular Dichroism</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects, investigation methods</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Hydroxyl Radical - metabolism</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Manganese - chemistry</subject><subject>Manganese - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Reactive Oxygen Species - chemistry</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Spin Trapping</subject><subject>Superoxide Dismutase - chemistry</subject><subject>Superoxide Dismutase - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtqGzEUQEVpaNy0i_5A0KaLLKbRY2Y0IqvENG3ATkrtlkIpQpY0YzmyZKQx9fxJPzcKNvGmK3G5h8PVAeADRp8wIvhyJRFFmKH1KzDCFUFFhUn9GowQQqRgTU1PwduUVnksSYPfgFNMmpqUDRmBf-Pg-xgcDC38bnTYwXmUPtneBp-g9Bo-7IbOeDjbGGVNgjfWa-s7aD2cejg2vjcxwcWQF8GFzirp3ABntvO2zYPv4cR22ZOu4DRo4-Cs3-pn0V_bL-Hvqf9TLKTKEhvU0oUYNsvBOSjfgZNWumTeH94z8OP283z8tZg8fLkbX08KSRnvC1wjrCVuuTa8LKuqUhTLVmpUVrRuSf4lVZQzSpgmmEpWSoao1jVacIIQbegZuNh7VQwpRdOKTbRrGQeBkXiuK17qZvZ8z262i7XRR_KQMwMfD4BMOUSbUyqbjlzJOWk4z1yx52zqze5lL-OjqBlllZh_m4nbm_uf8_vql5gcvVIlsQrb6HOS_xz4BM4tniA</recordid><startdate>20030723</startdate><enddate>20030723</enddate><creator>Ashur, Idan</creator><creator>Brandis, Alex</creator><creator>Greenwald, Moshe</creator><creator>Vakrat-Haglili, Yahel</creator><creator>Rosenbach-Belkin, Varda</creator><creator>Scheer, Hugo</creator><creator>Scherz, Avigdor</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030723</creationdate><title>Control of Redox Transitions and Oxygen Species Binding in Mn Centers by Biologically Significant Ligands; Model Studies with [Mn]-bacteriochlorophyll a</title><author>Ashur, Idan ; Brandis, Alex ; Greenwald, Moshe ; Vakrat-Haglili, Yahel ; Rosenbach-Belkin, Varda ; Scheer, Hugo ; Scherz, Avigdor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-1601da1f9de944555c31afad04536f26243c397327d213a74a703dd60b9200383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Bacteriochlorophyll A - chemistry</topic><topic>Bacteriochlorophyll A - metabolism</topic><topic>Biological and medical sciences</topic><topic>Circular Dichroism</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects, investigation methods</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Hydroxyl Radical - metabolism</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Manganese - chemistry</topic><topic>Manganese - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Reactive Oxygen Species - chemistry</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Spin Trapping</topic><topic>Superoxide Dismutase - chemistry</topic><topic>Superoxide Dismutase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashur, Idan</creatorcontrib><creatorcontrib>Brandis, Alex</creatorcontrib><creatorcontrib>Greenwald, Moshe</creatorcontrib><creatorcontrib>Vakrat-Haglili, Yahel</creatorcontrib><creatorcontrib>Rosenbach-Belkin, Varda</creatorcontrib><creatorcontrib>Scheer, Hugo</creatorcontrib><creatorcontrib>Scherz, Avigdor</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashur, Idan</au><au>Brandis, Alex</au><au>Greenwald, Moshe</au><au>Vakrat-Haglili, Yahel</au><au>Rosenbach-Belkin, Varda</au><au>Scheer, Hugo</au><au>Scherz, Avigdor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Redox Transitions and Oxygen Species Binding in Mn Centers by Biologically Significant Ligands; Model Studies with [Mn]-bacteriochlorophyll a</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2003-07-23</date><risdate>2003</risdate><volume>125</volume><issue>29</issue><spage>8852</spage><epage>8861</epage><pages>8852-8861</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>Mn-superoxide dismutase (Mn-SOD), which protects the cell from the toxic potential of superoxide radicals (O2 -•), is the only type of SOD which resides in eukaryotic mitochondria. Up-to-date, the exact catalytic mechanism of the enzyme and the relationship between substrate moieties and the ligands within the active site microenvironment are still not resolved. Here, we set out to explore the possible involvement of hydroperoxyl radicals (•OOH) in the catalytic dismutaion by following the interplay of MnIII/MnII redox transitions, ligands binding, and evolution or consumption of superoxide radical, using a new model system. The model system encompassed an Mn atom chelated by a bacteriochlorophyll allomer macrocycle (BChl) in aerated aprotic media that contain residual water. The redox states of the Mn ion were monitored by the Q y electronic transitions at 774 and 825 nm for [MnII]- and [MnIII]-BChl, respectively (Geskes, C.; Hartwich, G.; Scheer, H.; Mantele, W.; Heinze, J. J. Am. Chem. Soc. 1995, 117, 7776) and confirmed by electron spin resonance spectroscopy. Evolution of •OOH radicals was monitored by the ESR spin-trap technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The experimental data suggest that the [Mn]-BChl forms a (HO-)[MnIII]-BChl(OOH) complex upon solvation. Spectrophotometeric titrations with tetrabutylamonnium acetate (TBAA) and 1-methylimidazole (1-MeIm) together with ESI-MS measurements indicated the formation of a 1:1 complex with [Mn]-BChl for both ligands. The coordination of ligands at low concentrations to [MnIII]-BChl induced a release of a •OOH radical and a [MnIII]-BChl → [MnII]-BChl transition at higher concentrations. The estimated equilibrium constants for the total redox reaction are 1.9 × 104 ± 1 × 103 M-1 and 12.3 ± 0.6 M-1 for TBAA and 1-MeIm, respectively. The profound difference between the equilibrium constants agrees with the suggested key role of the ligand's basicity in the process. A direct interaction of superoxide radicals with [MnIII]-BChl in a KO2 acetonitrile (AN) solution also resulted in [MnIII]-BChl → [MnII]-BChl transition. Cumulatively, our data show that the MnIII center encourages the protonation of the O2 -• radical in an aprotic environment containing residual water molecules, while promoting its oxidation in the presence of basic ligands. Similar coordination and stabilization of the •OOH radical by the Mn center may be key steps in the enzymatic dismutation of superoxide radicals by Mn-SOD.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12862482</pmid><doi>10.1021/ja030170m</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2003-07, Vol.125 (29), p.8852-8861
issn 0002-7863
1520-5126
language eng
recordid cdi_crossref_primary_10_1021_ja030170m
source MEDLINE; American Chemical Society Journals
subjects Analytical, structural and metabolic biochemistry
Bacteriochlorophyll A - chemistry
Bacteriochlorophyll A - metabolism
Biological and medical sciences
Circular Dichroism
Enzymes and enzyme inhibitors
Fundamental and applied biological sciences. Psychology
General aspects, investigation methods
Hydroxyl Radical - chemistry
Hydroxyl Radical - metabolism
Kinetics
Ligands
Manganese - chemistry
Manganese - metabolism
Oxidation-Reduction
Reactive Oxygen Species - chemistry
Reactive Oxygen Species - metabolism
Spectrometry, Mass, Electrospray Ionization
Spin Trapping
Superoxide Dismutase - chemistry
Superoxide Dismutase - metabolism
title Control of Redox Transitions and Oxygen Species Binding in Mn Centers by Biologically Significant Ligands; Model Studies with [Mn]-bacteriochlorophyll a
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Redox%20Transitions%20and%20Oxygen%20Species%20Binding%20in%20Mn%20Centers%20by%20Biologically%20Significant%20Ligands;%20Model%20Studies%20with%20%5BMn%5D-bacteriochlorophyll%20a&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Ashur,%20Idan&rft.date=2003-07-23&rft.volume=125&rft.issue=29&rft.spage=8852&rft.epage=8861&rft.pages=8852-8861&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja030170m&rft_dat=%3Cistex_cross%3Eark_67375_TPS_FBNVTN5X_L%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/12862482&rfr_iscdi=true