Osmotic Coefficients and Activity Coefficients in Mixed Electrolyte Solutions

The excess free energy per mole of ionic strength in mixed electrolyte solutions is expressed as a linear function of this property of the solutions of single electrolytes at the same ionic strength, plus a quadratic term in the ionic strength fractions and plus higher deviation terms of the expansi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 1961-06, Vol.83 (12), p.2636-2642
1. Verfasser: Scatchard, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2642
container_issue 12
container_start_page 2636
container_title Journal of the American Chemical Society
container_volume 83
creator Scatchard, George
description The excess free energy per mole of ionic strength in mixed electrolyte solutions is expressed as a linear function of this property of the solutions of single electrolytes at the same ionic strength, plus a quadratic term in the ionic strength fractions and plus higher deviation terms of the expansion around the midpoint, of which the cubic term is usually sufficient. Other properties are obtained by appropriate differentiations, the osmotic coefficients and activity coefficients by differentiation with respect to the logarithm of the ionic strength. The method is applied to freezing points, isopiestic, and solute activity measurements. The deviations from linearity in ionic strength fraction are relatively smooth functions of the ionic strength which may be expressed approximately as integral power series. The relatively complicated linear terms may usually be expressed approximately by the Debye-Huckel functions with a different size parameter for each electrolyte plus integral power series in the ionic strength. The relations of this method to Bronsted's principle of specific ion interaction, to Harned's rule and Friedman's application of the Mayer theory are discussed. (auth)
doi_str_mv 10.1021/ja01473a010
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ja01473a010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b41637823</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-7cb3a3aa3f4aaf72d0ee88a235089450a7552979905583f61b96f4f3cfea6f8d3</originalsourceid><addsrcrecordid>eNpt0FFLwzAQAOAgCs7pk3-g-OKDVC9J06SPY2wqbEzZ1MeQpQlmdo00maz_3kpFFHy547iP4-4QOsdwjYHgm40CnHHaRThAA8wIpAyT_BANAICkXOT0GJ2EsOnKjAg8QPNF2ProdDL2xlqnnaljSFRdJiMd3YeL7d-Oq5O525symVRGx8ZXbTTJ0le76HwdTtGRVVUwZ995iJ6mk9X4Lp0tbu_Ho1mqaJHHlOs1VVQpajOlLCclGCOEIpSBKDIGijNGCl4UwJigNsfrIreZpdoalVtR0iG66Of6EJ0M2kWjX7Wv624nmQHNMMMduuqRbnwIjbHyvXFb1bQSg_x6l_z1rk6nvXYhmv0PVc2bzDnlTK4elvKZTR9BrGbypfOXvVc6yI3fNXV38L-TPwEaVXiX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Osmotic Coefficients and Activity Coefficients in Mixed Electrolyte Solutions</title><source>American Chemical Society Journals</source><creator>Scatchard, George</creator><creatorcontrib>Scatchard, George ; Massachusetts Inst. of Tech., Cambridge</creatorcontrib><description>The excess free energy per mole of ionic strength in mixed electrolyte solutions is expressed as a linear function of this property of the solutions of single electrolytes at the same ionic strength, plus a quadratic term in the ionic strength fractions and plus higher deviation terms of the expansion around the midpoint, of which the cubic term is usually sufficient. Other properties are obtained by appropriate differentiations, the osmotic coefficients and activity coefficients by differentiation with respect to the logarithm of the ionic strength. The method is applied to freezing points, isopiestic, and solute activity measurements. The deviations from linearity in ionic strength fraction are relatively smooth functions of the ionic strength which may be expressed approximately as integral power series. The relatively complicated linear terms may usually be expressed approximately by the Debye-Huckel functions with a different size parameter for each electrolyte plus integral power series in the ionic strength. The relations of this method to Bronsted's principle of specific ion interaction, to Harned's rule and Friedman's application of the Mayer theory are discussed. (auth)</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja01473a010</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>BEHAVIOR ; BINDING ENERGY ; BROENSTED THEORY ; CHEMISTRY ; DEBYE-HUECKEL LAW ; ELECTROLYTES ; GASES ; INTERACTIONS ; IONIC STRENGTH ; IONS ; MAYER THEORY ; MEASURED VALUES ; MEMBRANES ; MIXING ; PLASMA ; REACTION KINETICS ; SOLUTIONS ; THERMODYNAMICS</subject><ispartof>Journal of the American Chemical Society, 1961-06, Vol.83 (12), p.2636-2642</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-7cb3a3aa3f4aaf72d0ee88a235089450a7552979905583f61b96f4f3cfea6f8d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja01473a010$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja01473a010$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4034151$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Scatchard, George</creatorcontrib><creatorcontrib>Massachusetts Inst. of Tech., Cambridge</creatorcontrib><title>Osmotic Coefficients and Activity Coefficients in Mixed Electrolyte Solutions</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The excess free energy per mole of ionic strength in mixed electrolyte solutions is expressed as a linear function of this property of the solutions of single electrolytes at the same ionic strength, plus a quadratic term in the ionic strength fractions and plus higher deviation terms of the expansion around the midpoint, of which the cubic term is usually sufficient. Other properties are obtained by appropriate differentiations, the osmotic coefficients and activity coefficients by differentiation with respect to the logarithm of the ionic strength. The method is applied to freezing points, isopiestic, and solute activity measurements. The deviations from linearity in ionic strength fraction are relatively smooth functions of the ionic strength which may be expressed approximately as integral power series. The relatively complicated linear terms may usually be expressed approximately by the Debye-Huckel functions with a different size parameter for each electrolyte plus integral power series in the ionic strength. The relations of this method to Bronsted's principle of specific ion interaction, to Harned's rule and Friedman's application of the Mayer theory are discussed. (auth)</description><subject>BEHAVIOR</subject><subject>BINDING ENERGY</subject><subject>BROENSTED THEORY</subject><subject>CHEMISTRY</subject><subject>DEBYE-HUECKEL LAW</subject><subject>ELECTROLYTES</subject><subject>GASES</subject><subject>INTERACTIONS</subject><subject>IONIC STRENGTH</subject><subject>IONS</subject><subject>MAYER THEORY</subject><subject>MEASURED VALUES</subject><subject>MEMBRANES</subject><subject>MIXING</subject><subject>PLASMA</subject><subject>REACTION KINETICS</subject><subject>SOLUTIONS</subject><subject>THERMODYNAMICS</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1961</creationdate><recordtype>article</recordtype><recordid>eNpt0FFLwzAQAOAgCs7pk3-g-OKDVC9J06SPY2wqbEzZ1MeQpQlmdo00maz_3kpFFHy547iP4-4QOsdwjYHgm40CnHHaRThAA8wIpAyT_BANAICkXOT0GJ2EsOnKjAg8QPNF2ProdDL2xlqnnaljSFRdJiMd3YeL7d-Oq5O525symVRGx8ZXbTTJ0le76HwdTtGRVVUwZ995iJ6mk9X4Lp0tbu_Ho1mqaJHHlOs1VVQpajOlLCclGCOEIpSBKDIGijNGCl4UwJigNsfrIreZpdoalVtR0iG66Of6EJ0M2kWjX7Wv624nmQHNMMMduuqRbnwIjbHyvXFb1bQSg_x6l_z1rk6nvXYhmv0PVc2bzDnlTK4elvKZTR9BrGbypfOXvVc6yI3fNXV38L-TPwEaVXiX</recordid><startdate>19610601</startdate><enddate>19610601</enddate><creator>Scatchard, George</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19610601</creationdate><title>Osmotic Coefficients and Activity Coefficients in Mixed Electrolyte Solutions</title><author>Scatchard, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-7cb3a3aa3f4aaf72d0ee88a235089450a7552979905583f61b96f4f3cfea6f8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1961</creationdate><topic>BEHAVIOR</topic><topic>BINDING ENERGY</topic><topic>BROENSTED THEORY</topic><topic>CHEMISTRY</topic><topic>DEBYE-HUECKEL LAW</topic><topic>ELECTROLYTES</topic><topic>GASES</topic><topic>INTERACTIONS</topic><topic>IONIC STRENGTH</topic><topic>IONS</topic><topic>MAYER THEORY</topic><topic>MEASURED VALUES</topic><topic>MEMBRANES</topic><topic>MIXING</topic><topic>PLASMA</topic><topic>REACTION KINETICS</topic><topic>SOLUTIONS</topic><topic>THERMODYNAMICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scatchard, George</creatorcontrib><creatorcontrib>Massachusetts Inst. of Tech., Cambridge</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scatchard, George</au><aucorp>Massachusetts Inst. of Tech., Cambridge</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osmotic Coefficients and Activity Coefficients in Mixed Electrolyte Solutions</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>1961-06-01</date><risdate>1961</risdate><volume>83</volume><issue>12</issue><spage>2636</spage><epage>2642</epage><pages>2636-2642</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The excess free energy per mole of ionic strength in mixed electrolyte solutions is expressed as a linear function of this property of the solutions of single electrolytes at the same ionic strength, plus a quadratic term in the ionic strength fractions and plus higher deviation terms of the expansion around the midpoint, of which the cubic term is usually sufficient. Other properties are obtained by appropriate differentiations, the osmotic coefficients and activity coefficients by differentiation with respect to the logarithm of the ionic strength. The method is applied to freezing points, isopiestic, and solute activity measurements. The deviations from linearity in ionic strength fraction are relatively smooth functions of the ionic strength which may be expressed approximately as integral power series. The relatively complicated linear terms may usually be expressed approximately by the Debye-Huckel functions with a different size parameter for each electrolyte plus integral power series in the ionic strength. The relations of this method to Bronsted's principle of specific ion interaction, to Harned's rule and Friedman's application of the Mayer theory are discussed. (auth)</abstract><pub>American Chemical Society</pub><doi>10.1021/ja01473a010</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 1961-06, Vol.83 (12), p.2636-2642
issn 0002-7863
1520-5126
language eng
recordid cdi_crossref_primary_10_1021_ja01473a010
source American Chemical Society Journals
subjects BEHAVIOR
BINDING ENERGY
BROENSTED THEORY
CHEMISTRY
DEBYE-HUECKEL LAW
ELECTROLYTES
GASES
INTERACTIONS
IONIC STRENGTH
IONS
MAYER THEORY
MEASURED VALUES
MEMBRANES
MIXING
PLASMA
REACTION KINETICS
SOLUTIONS
THERMODYNAMICS
title Osmotic Coefficients and Activity Coefficients in Mixed Electrolyte Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osmotic%20Coefficients%20and%20Activity%20Coefficients%20in%20Mixed%20Electrolyte%20Solutions&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Scatchard,%20George&rft.aucorp=Massachusetts%20Inst.%20of%20Tech.,%20Cambridge&rft.date=1961-06-01&rft.volume=83&rft.issue=12&rft.spage=2636&rft.epage=2642&rft.pages=2636-2642&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja01473a010&rft_dat=%3Cacs_osti_%3Eb41637823%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true