Osmotic Coefficients and Activity Coefficients in Mixed Electrolyte Solutions
The excess free energy per mole of ionic strength in mixed electrolyte solutions is expressed as a linear function of this property of the solutions of single electrolytes at the same ionic strength, plus a quadratic term in the ionic strength fractions and plus higher deviation terms of the expansi...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 1961-06, Vol.83 (12), p.2636-2642 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2642 |
---|---|
container_issue | 12 |
container_start_page | 2636 |
container_title | Journal of the American Chemical Society |
container_volume | 83 |
creator | Scatchard, George |
description | The excess free energy per mole of ionic strength in mixed electrolyte solutions is expressed as a linear function of this property of the solutions of single electrolytes at the same ionic strength, plus a quadratic term in the ionic strength fractions and plus higher deviation terms of the expansion around the midpoint, of which the cubic term is usually sufficient. Other properties are obtained by appropriate differentiations, the osmotic coefficients and activity coefficients by differentiation with respect to the logarithm of the ionic strength. The method is applied to freezing points, isopiestic, and solute activity measurements. The deviations from linearity in ionic strength fraction are relatively smooth functions of the ionic strength which may be expressed approximately as integral power series. The relatively complicated linear terms may usually be expressed approximately by the Debye-Huckel functions with a different size parameter for each electrolyte plus integral power series in the ionic strength. The relations of this method to Bronsted's principle of specific ion interaction, to Harned's rule and Friedman's application of the Mayer theory are discussed. (auth) |
doi_str_mv | 10.1021/ja01473a010 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ja01473a010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b41637823</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-7cb3a3aa3f4aaf72d0ee88a235089450a7552979905583f61b96f4f3cfea6f8d3</originalsourceid><addsrcrecordid>eNpt0FFLwzAQAOAgCs7pk3-g-OKDVC9J06SPY2wqbEzZ1MeQpQlmdo00maz_3kpFFHy547iP4-4QOsdwjYHgm40CnHHaRThAA8wIpAyT_BANAICkXOT0GJ2EsOnKjAg8QPNF2ProdDL2xlqnnaljSFRdJiMd3YeL7d-Oq5O525symVRGx8ZXbTTJ0le76HwdTtGRVVUwZ995iJ6mk9X4Lp0tbu_Ho1mqaJHHlOs1VVQpajOlLCclGCOEIpSBKDIGijNGCl4UwJigNsfrIreZpdoalVtR0iG66Of6EJ0M2kWjX7Wv624nmQHNMMMduuqRbnwIjbHyvXFb1bQSg_x6l_z1rk6nvXYhmv0PVc2bzDnlTK4elvKZTR9BrGbypfOXvVc6yI3fNXV38L-TPwEaVXiX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Osmotic Coefficients and Activity Coefficients in Mixed Electrolyte Solutions</title><source>American Chemical Society Journals</source><creator>Scatchard, George</creator><creatorcontrib>Scatchard, George ; Massachusetts Inst. of Tech., Cambridge</creatorcontrib><description>The excess free energy per mole of ionic strength in mixed electrolyte solutions is expressed as a linear function of this property of the solutions of single electrolytes at the same ionic strength, plus a quadratic term in the ionic strength fractions and plus higher deviation terms of the expansion around the midpoint, of which the cubic term is usually sufficient. Other properties are obtained by appropriate differentiations, the osmotic coefficients and activity coefficients by differentiation with respect to the logarithm of the ionic strength. The method is applied to freezing points, isopiestic, and solute activity measurements. The deviations from linearity in ionic strength fraction are relatively smooth functions of the ionic strength which may be expressed approximately as integral power series. The relatively complicated linear terms may usually be expressed approximately by the Debye-Huckel functions with a different size parameter for each electrolyte plus integral power series in the ionic strength. The relations of this method to Bronsted's principle of specific ion interaction, to Harned's rule and Friedman's application of the Mayer theory are discussed. (auth)</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja01473a010</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>BEHAVIOR ; BINDING ENERGY ; BROENSTED THEORY ; CHEMISTRY ; DEBYE-HUECKEL LAW ; ELECTROLYTES ; GASES ; INTERACTIONS ; IONIC STRENGTH ; IONS ; MAYER THEORY ; MEASURED VALUES ; MEMBRANES ; MIXING ; PLASMA ; REACTION KINETICS ; SOLUTIONS ; THERMODYNAMICS</subject><ispartof>Journal of the American Chemical Society, 1961-06, Vol.83 (12), p.2636-2642</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-7cb3a3aa3f4aaf72d0ee88a235089450a7552979905583f61b96f4f3cfea6f8d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja01473a010$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja01473a010$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4034151$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Scatchard, George</creatorcontrib><creatorcontrib>Massachusetts Inst. of Tech., Cambridge</creatorcontrib><title>Osmotic Coefficients and Activity Coefficients in Mixed Electrolyte Solutions</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The excess free energy per mole of ionic strength in mixed electrolyte solutions is expressed as a linear function of this property of the solutions of single electrolytes at the same ionic strength, plus a quadratic term in the ionic strength fractions and plus higher deviation terms of the expansion around the midpoint, of which the cubic term is usually sufficient. Other properties are obtained by appropriate differentiations, the osmotic coefficients and activity coefficients by differentiation with respect to the logarithm of the ionic strength. The method is applied to freezing points, isopiestic, and solute activity measurements. The deviations from linearity in ionic strength fraction are relatively smooth functions of the ionic strength which may be expressed approximately as integral power series. The relatively complicated linear terms may usually be expressed approximately by the Debye-Huckel functions with a different size parameter for each electrolyte plus integral power series in the ionic strength. The relations of this method to Bronsted's principle of specific ion interaction, to Harned's rule and Friedman's application of the Mayer theory are discussed. (auth)</description><subject>BEHAVIOR</subject><subject>BINDING ENERGY</subject><subject>BROENSTED THEORY</subject><subject>CHEMISTRY</subject><subject>DEBYE-HUECKEL LAW</subject><subject>ELECTROLYTES</subject><subject>GASES</subject><subject>INTERACTIONS</subject><subject>IONIC STRENGTH</subject><subject>IONS</subject><subject>MAYER THEORY</subject><subject>MEASURED VALUES</subject><subject>MEMBRANES</subject><subject>MIXING</subject><subject>PLASMA</subject><subject>REACTION KINETICS</subject><subject>SOLUTIONS</subject><subject>THERMODYNAMICS</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1961</creationdate><recordtype>article</recordtype><recordid>eNpt0FFLwzAQAOAgCs7pk3-g-OKDVC9J06SPY2wqbEzZ1MeQpQlmdo00maz_3kpFFHy547iP4-4QOsdwjYHgm40CnHHaRThAA8wIpAyT_BANAICkXOT0GJ2EsOnKjAg8QPNF2ProdDL2xlqnnaljSFRdJiMd3YeL7d-Oq5O525symVRGx8ZXbTTJ0le76HwdTtGRVVUwZ995iJ6mk9X4Lp0tbu_Ho1mqaJHHlOs1VVQpajOlLCclGCOEIpSBKDIGijNGCl4UwJigNsfrIreZpdoalVtR0iG66Of6EJ0M2kWjX7Wv624nmQHNMMMduuqRbnwIjbHyvXFb1bQSg_x6l_z1rk6nvXYhmv0PVc2bzDnlTK4elvKZTR9BrGbypfOXvVc6yI3fNXV38L-TPwEaVXiX</recordid><startdate>19610601</startdate><enddate>19610601</enddate><creator>Scatchard, George</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19610601</creationdate><title>Osmotic Coefficients and Activity Coefficients in Mixed Electrolyte Solutions</title><author>Scatchard, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-7cb3a3aa3f4aaf72d0ee88a235089450a7552979905583f61b96f4f3cfea6f8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1961</creationdate><topic>BEHAVIOR</topic><topic>BINDING ENERGY</topic><topic>BROENSTED THEORY</topic><topic>CHEMISTRY</topic><topic>DEBYE-HUECKEL LAW</topic><topic>ELECTROLYTES</topic><topic>GASES</topic><topic>INTERACTIONS</topic><topic>IONIC STRENGTH</topic><topic>IONS</topic><topic>MAYER THEORY</topic><topic>MEASURED VALUES</topic><topic>MEMBRANES</topic><topic>MIXING</topic><topic>PLASMA</topic><topic>REACTION KINETICS</topic><topic>SOLUTIONS</topic><topic>THERMODYNAMICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scatchard, George</creatorcontrib><creatorcontrib>Massachusetts Inst. of Tech., Cambridge</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scatchard, George</au><aucorp>Massachusetts Inst. of Tech., Cambridge</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osmotic Coefficients and Activity Coefficients in Mixed Electrolyte Solutions</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>1961-06-01</date><risdate>1961</risdate><volume>83</volume><issue>12</issue><spage>2636</spage><epage>2642</epage><pages>2636-2642</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The excess free energy per mole of ionic strength in mixed electrolyte solutions is expressed as a linear function of this property of the solutions of single electrolytes at the same ionic strength, plus a quadratic term in the ionic strength fractions and plus higher deviation terms of the expansion around the midpoint, of which the cubic term is usually sufficient. Other properties are obtained by appropriate differentiations, the osmotic coefficients and activity coefficients by differentiation with respect to the logarithm of the ionic strength. The method is applied to freezing points, isopiestic, and solute activity measurements. The deviations from linearity in ionic strength fraction are relatively smooth functions of the ionic strength which may be expressed approximately as integral power series. The relatively complicated linear terms may usually be expressed approximately by the Debye-Huckel functions with a different size parameter for each electrolyte plus integral power series in the ionic strength. The relations of this method to Bronsted's principle of specific ion interaction, to Harned's rule and Friedman's application of the Mayer theory are discussed. (auth)</abstract><pub>American Chemical Society</pub><doi>10.1021/ja01473a010</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 1961-06, Vol.83 (12), p.2636-2642 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ja01473a010 |
source | American Chemical Society Journals |
subjects | BEHAVIOR BINDING ENERGY BROENSTED THEORY CHEMISTRY DEBYE-HUECKEL LAW ELECTROLYTES GASES INTERACTIONS IONIC STRENGTH IONS MAYER THEORY MEASURED VALUES MEMBRANES MIXING PLASMA REACTION KINETICS SOLUTIONS THERMODYNAMICS |
title | Osmotic Coefficients and Activity Coefficients in Mixed Electrolyte Solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osmotic%20Coefficients%20and%20Activity%20Coefficients%20in%20Mixed%20Electrolyte%20Solutions&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Scatchard,%20George&rft.aucorp=Massachusetts%20Inst.%20of%20Tech.,%20Cambridge&rft.date=1961-06-01&rft.volume=83&rft.issue=12&rft.spage=2636&rft.epage=2642&rft.pages=2636-2642&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja01473a010&rft_dat=%3Cacs_osti_%3Eb41637823%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |