Polymeric Self-Assembled Monolayers. 3. Pattern Transfer by Use of Photolithography, Electrochemical Methods, and an Ultrathin, Self-Assembled Diacetylenic Resist

We report herein that a substrate can be patterned using a diacetylenic, self-assembled monolayer (SAM) resist and photolithographic and electrochemical methods. Our proof-of-concept experiments result in micron-scale pattern transfer onto Au substrates, but extension to other materials, including S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 1995-05, Vol.117 (21), p.5875-5876
Hauptverfasser: Chan, Kwok C, Kim, Taisun, Schoer, Jonathan K, Crooks, Richard M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5876
container_issue 21
container_start_page 5875
container_title Journal of the American Chemical Society
container_volume 117
creator Chan, Kwok C
Kim, Taisun
Schoer, Jonathan K
Crooks, Richard M
description We report herein that a substrate can be patterned using a diacetylenic, self-assembled monolayer (SAM) resist and photolithographic and electrochemical methods. Our proof-of-concept experiments result in micron-scale pattern transfer onto Au substrates, but extension to other materials, including Si, Al, and GaAs, and nanometer-scale patterning will be straightforward. It is demonstrated that a SAM composed of diacetylenic organomercaptans can be used as a negative photolithographic resist. The importance of this method results from the fact that the resist is highly organized, thin, and largely defect free. These factors ensure high-resolution patterning and control over the surface energy and reactivity of the resist itself, which permits an added dimension of control over surface processing. In addition, resist stripping involves only gentle and easily controlled electrochemical methods. Moreover, we have previously shown that organized multilayers of polydiacetylenic SAMs can be easily formed, so resist thickness can be controlled over a broad range. Finally, unique electronic and photonic properties of the polymeric SAMs might themselves be integrated into Si-based devices using this lithographic approach in the future. 34 refs., 2 figs.
doi_str_mv 10.1021/ja00126a037
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ja00126a037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c377237108</sourcerecordid><originalsourceid>FETCH-LOGICAL-a392t-c5dbefcf7b622ed2b50c5a8d59c74d74add07cc8a5b30753a08d028f758e29d3</originalsourceid><addsrcrecordid>eNptkc-KFDEQxoMoOK6efIHcPDg9ppNJp-e4rusf3NXB7cVjqE6q7YyZZEki2K_jkxoZEREPRVHUj6_q4yPkacs2LePtiwMw1vIOmFD3yKqVnDWyzvfJijHGG9V34iF5lPOhjlvetyvyYx_9csTkDL1BPzXnOeNx9GjpdQzRw4Ipb6jY0D2UginQIUHIEyY6LvQ2I40T3c-xRO_KHL8kuJuXNb30aEqKZsajM-DpNdalzWsKwdait74kKLML63-vvnJgsCweQ_3oE2aXy2PyYAKf8cnvfkaG15fDxdvm6uObdxfnVw2IHS-NkXbEyUxq7DhHy0fJjITeyp1RW6u2YC1TxvQgR8GUFMB6y3g_Kdkj31lxRuhJNubidDauoJlNDKFa0R3fdn1Fnp8Qk2LOCSd9l9wR0qJbpn8FoP8KoNLNia4e8PsfFNJX3SmhpB72N_r9Z_FheMkHzSv_7MSDyfoQv6VQ3f5X-SdJgZcF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polymeric Self-Assembled Monolayers. 3. Pattern Transfer by Use of Photolithography, Electrochemical Methods, and an Ultrathin, Self-Assembled Diacetylenic Resist</title><source>ACS Publications</source><creator>Chan, Kwok C ; Kim, Taisun ; Schoer, Jonathan K ; Crooks, Richard M</creator><creatorcontrib>Chan, Kwok C ; Kim, Taisun ; Schoer, Jonathan K ; Crooks, Richard M ; Sandia National Laboratory</creatorcontrib><description>We report herein that a substrate can be patterned using a diacetylenic, self-assembled monolayer (SAM) resist and photolithographic and electrochemical methods. Our proof-of-concept experiments result in micron-scale pattern transfer onto Au substrates, but extension to other materials, including Si, Al, and GaAs, and nanometer-scale patterning will be straightforward. It is demonstrated that a SAM composed of diacetylenic organomercaptans can be used as a negative photolithographic resist. The importance of this method results from the fact that the resist is highly organized, thin, and largely defect free. These factors ensure high-resolution patterning and control over the surface energy and reactivity of the resist itself, which permits an added dimension of control over surface processing. In addition, resist stripping involves only gentle and easily controlled electrochemical methods. Moreover, we have previously shown that organized multilayers of polydiacetylenic SAMs can be easily formed, so resist thickness can be controlled over a broad range. Finally, unique electronic and photonic properties of the polymeric SAMs might themselves be integrated into Si-based devices using this lithographic approach in the future. 34 refs., 2 figs.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja00126a037</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>40 CHEMISTRY ; ALKYNES ; ELECTROCHEMISTRY ; MASKING ; MATERIALS ; ORGANIC SULFUR COMPOUNDS ; PHOTOGRAPHY ; PHOTOSENSITIVITY ; THIN FILMS ; THIOLS ; TRANSMISSION ELECTRON MICROSCOPY</subject><ispartof>Journal of the American Chemical Society, 1995-05, Vol.117 (21), p.5875-5876</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a392t-c5dbefcf7b622ed2b50c5a8d59c74d74add07cc8a5b30753a08d028f758e29d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja00126a037$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja00126a037$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/62468$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, Kwok C</creatorcontrib><creatorcontrib>Kim, Taisun</creatorcontrib><creatorcontrib>Schoer, Jonathan K</creatorcontrib><creatorcontrib>Crooks, Richard M</creatorcontrib><creatorcontrib>Sandia National Laboratory</creatorcontrib><title>Polymeric Self-Assembled Monolayers. 3. Pattern Transfer by Use of Photolithography, Electrochemical Methods, and an Ultrathin, Self-Assembled Diacetylenic Resist</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We report herein that a substrate can be patterned using a diacetylenic, self-assembled monolayer (SAM) resist and photolithographic and electrochemical methods. Our proof-of-concept experiments result in micron-scale pattern transfer onto Au substrates, but extension to other materials, including Si, Al, and GaAs, and nanometer-scale patterning will be straightforward. It is demonstrated that a SAM composed of diacetylenic organomercaptans can be used as a negative photolithographic resist. The importance of this method results from the fact that the resist is highly organized, thin, and largely defect free. These factors ensure high-resolution patterning and control over the surface energy and reactivity of the resist itself, which permits an added dimension of control over surface processing. In addition, resist stripping involves only gentle and easily controlled electrochemical methods. Moreover, we have previously shown that organized multilayers of polydiacetylenic SAMs can be easily formed, so resist thickness can be controlled over a broad range. Finally, unique electronic and photonic properties of the polymeric SAMs might themselves be integrated into Si-based devices using this lithographic approach in the future. 34 refs., 2 figs.</description><subject>40 CHEMISTRY</subject><subject>ALKYNES</subject><subject>ELECTROCHEMISTRY</subject><subject>MASKING</subject><subject>MATERIALS</subject><subject>ORGANIC SULFUR COMPOUNDS</subject><subject>PHOTOGRAPHY</subject><subject>PHOTOSENSITIVITY</subject><subject>THIN FILMS</subject><subject>THIOLS</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNptkc-KFDEQxoMoOK6efIHcPDg9ppNJp-e4rusf3NXB7cVjqE6q7YyZZEki2K_jkxoZEREPRVHUj6_q4yPkacs2LePtiwMw1vIOmFD3yKqVnDWyzvfJijHGG9V34iF5lPOhjlvetyvyYx_9csTkDL1BPzXnOeNx9GjpdQzRw4Ipb6jY0D2UginQIUHIEyY6LvQ2I40T3c-xRO_KHL8kuJuXNb30aEqKZsajM-DpNdalzWsKwdait74kKLML63-vvnJgsCweQ_3oE2aXy2PyYAKf8cnvfkaG15fDxdvm6uObdxfnVw2IHS-NkXbEyUxq7DhHy0fJjITeyp1RW6u2YC1TxvQgR8GUFMB6y3g_Kdkj31lxRuhJNubidDauoJlNDKFa0R3fdn1Fnp8Qk2LOCSd9l9wR0qJbpn8FoP8KoNLNia4e8PsfFNJX3SmhpB72N_r9Z_FheMkHzSv_7MSDyfoQv6VQ3f5X-SdJgZcF</recordid><startdate>199505</startdate><enddate>199505</enddate><creator>Chan, Kwok C</creator><creator>Kim, Taisun</creator><creator>Schoer, Jonathan K</creator><creator>Crooks, Richard M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199505</creationdate><title>Polymeric Self-Assembled Monolayers. 3. Pattern Transfer by Use of Photolithography, Electrochemical Methods, and an Ultrathin, Self-Assembled Diacetylenic Resist</title><author>Chan, Kwok C ; Kim, Taisun ; Schoer, Jonathan K ; Crooks, Richard M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a392t-c5dbefcf7b622ed2b50c5a8d59c74d74add07cc8a5b30753a08d028f758e29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>40 CHEMISTRY</topic><topic>ALKYNES</topic><topic>ELECTROCHEMISTRY</topic><topic>MASKING</topic><topic>MATERIALS</topic><topic>ORGANIC SULFUR COMPOUNDS</topic><topic>PHOTOGRAPHY</topic><topic>PHOTOSENSITIVITY</topic><topic>THIN FILMS</topic><topic>THIOLS</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Kwok C</creatorcontrib><creatorcontrib>Kim, Taisun</creatorcontrib><creatorcontrib>Schoer, Jonathan K</creatorcontrib><creatorcontrib>Crooks, Richard M</creatorcontrib><creatorcontrib>Sandia National Laboratory</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Kwok C</au><au>Kim, Taisun</au><au>Schoer, Jonathan K</au><au>Crooks, Richard M</au><aucorp>Sandia National Laboratory</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymeric Self-Assembled Monolayers. 3. Pattern Transfer by Use of Photolithography, Electrochemical Methods, and an Ultrathin, Self-Assembled Diacetylenic Resist</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>1995-05</date><risdate>1995</risdate><volume>117</volume><issue>21</issue><spage>5875</spage><epage>5876</epage><pages>5875-5876</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>We report herein that a substrate can be patterned using a diacetylenic, self-assembled monolayer (SAM) resist and photolithographic and electrochemical methods. Our proof-of-concept experiments result in micron-scale pattern transfer onto Au substrates, but extension to other materials, including Si, Al, and GaAs, and nanometer-scale patterning will be straightforward. It is demonstrated that a SAM composed of diacetylenic organomercaptans can be used as a negative photolithographic resist. The importance of this method results from the fact that the resist is highly organized, thin, and largely defect free. These factors ensure high-resolution patterning and control over the surface energy and reactivity of the resist itself, which permits an added dimension of control over surface processing. In addition, resist stripping involves only gentle and easily controlled electrochemical methods. Moreover, we have previously shown that organized multilayers of polydiacetylenic SAMs can be easily formed, so resist thickness can be controlled over a broad range. Finally, unique electronic and photonic properties of the polymeric SAMs might themselves be integrated into Si-based devices using this lithographic approach in the future. 34 refs., 2 figs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/ja00126a037</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 1995-05, Vol.117 (21), p.5875-5876
issn 0002-7863
1520-5126
language eng
recordid cdi_crossref_primary_10_1021_ja00126a037
source ACS Publications
subjects 40 CHEMISTRY
ALKYNES
ELECTROCHEMISTRY
MASKING
MATERIALS
ORGANIC SULFUR COMPOUNDS
PHOTOGRAPHY
PHOTOSENSITIVITY
THIN FILMS
THIOLS
TRANSMISSION ELECTRON MICROSCOPY
title Polymeric Self-Assembled Monolayers. 3. Pattern Transfer by Use of Photolithography, Electrochemical Methods, and an Ultrathin, Self-Assembled Diacetylenic Resist
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymeric%20Self-Assembled%20Monolayers.%203.%20Pattern%20Transfer%20by%20Use%20of%20Photolithography,%20Electrochemical%20Methods,%20and%20an%20Ultrathin,%20Self-Assembled%20Diacetylenic%20Resist&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chan,%20Kwok%20C&rft.aucorp=Sandia%20National%20Laboratory&rft.date=1995-05&rft.volume=117&rft.issue=21&rft.spage=5875&rft.epage=5876&rft.pages=5875-5876&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja00126a037&rft_dat=%3Cacs_osti_%3Ec377237108%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true