A Systematic Method for Optimum Sensor Selection in Inferential Control Systems
This paper considers the optimal selection of sensor locations in square inferential control systems, where the number of measurements employed is equal to the number of actuators. A mixed-integer linear programming (MILP) problem formulation is proposed based on the assumption that the control obje...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 1999-11, Vol.38 (11), p.4299-4308 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4308 |
---|---|
container_issue | 11 |
container_start_page | 4299 |
container_title | Industrial & engineering chemistry research |
container_volume | 38 |
creator | Kookos, Ioannis K Perkins, John D |
description | This paper considers the optimal selection of sensor locations in square inferential control systems, where the number of measurements employed is equal to the number of actuators. A mixed-integer linear programming (MILP) problem formulation is proposed based on the assumption that the control objectives can be related to the variability of certain process variables. The method is applied to three case studies including a methanol−water column, a deisobutanizer column, and a benzene, toluene, o-xylene column. The selection of tray temperatures for inferential composition control is the problem considered in these case studies. To investigate the validity of the proposed method, closed-loop simulations are carried out. The method is shown to provide a satisfactory answer to the optimum sensor selection problem. |
doi_str_mv | 10.1021/ie9902737 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie9902737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_HG3GLS8C_R</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-2a9693fa4e47f725944b00a712178ab66d8845962942036b219ed4a1f29579443</originalsourceid><addsrcrecordid>eNptkEFLAzEQhYMoWKsH_0EOevCwmmST3eRYFm0LlYpbzyHdJpi6my1JCvbfG9lSL56GYb73hvcAuMXoESOCn6wWApEyL8_ACDOCMoYoOwcjxDnPGOfsElyFsEUIMUbpCCwnsD6EqDsVbQNfdfzsN9D0Hi530Xb7DtbahbTWutVNtL2D1sG5M9prF61qYdW76Pv26BKuwYVRbdA3xzkGHy_Pq2qWLZbTeTVZZConNGZEiULkRlFNS1MSJihdI6RKTHDJ1booNpxTJgoiKEF5sSZY6A1V2BDBygTnY_Aw-Da-D8FrI3fedsofJEbytwl5aiKxdwO7U6FRrfHKNTb8CYTIS8QSlg2YTUm-T2flv2SRbJhcvdVyNs2ni5pX8j3x9wOvmiC3_d67FPif9z_RZ3az</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Systematic Method for Optimum Sensor Selection in Inferential Control Systems</title><source>ACS Publications</source><creator>Kookos, Ioannis K ; Perkins, John D</creator><creatorcontrib>Kookos, Ioannis K ; Perkins, John D</creatorcontrib><description>This paper considers the optimal selection of sensor locations in square inferential control systems, where the number of measurements employed is equal to the number of actuators. A mixed-integer linear programming (MILP) problem formulation is proposed based on the assumption that the control objectives can be related to the variability of certain process variables. The method is applied to three case studies including a methanol−water column, a deisobutanizer column, and a benzene, toluene, o-xylene column. The selection of tray temperatures for inferential composition control is the problem considered in these case studies. To investigate the validity of the proposed method, closed-loop simulations are carried out. The method is shown to provide a satisfactory answer to the optimum sensor selection problem.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie9902737</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Distillation ; Exact sciences and technology</subject><ispartof>Industrial & engineering chemistry research, 1999-11, Vol.38 (11), p.4299-4308</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-2a9693fa4e47f725944b00a712178ab66d8845962942036b219ed4a1f29579443</citedby><cites>FETCH-LOGICAL-a324t-2a9693fa4e47f725944b00a712178ab66d8845962942036b219ed4a1f29579443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie9902737$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie9902737$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1993705$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kookos, Ioannis K</creatorcontrib><creatorcontrib>Perkins, John D</creatorcontrib><title>A Systematic Method for Optimum Sensor Selection in Inferential Control Systems</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>This paper considers the optimal selection of sensor locations in square inferential control systems, where the number of measurements employed is equal to the number of actuators. A mixed-integer linear programming (MILP) problem formulation is proposed based on the assumption that the control objectives can be related to the variability of certain process variables. The method is applied to three case studies including a methanol−water column, a deisobutanizer column, and a benzene, toluene, o-xylene column. The selection of tray temperatures for inferential composition control is the problem considered in these case studies. To investigate the validity of the proposed method, closed-loop simulations are carried out. The method is shown to provide a satisfactory answer to the optimum sensor selection problem.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Distillation</subject><subject>Exact sciences and technology</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNptkEFLAzEQhYMoWKsH_0EOevCwmmST3eRYFm0LlYpbzyHdJpi6my1JCvbfG9lSL56GYb73hvcAuMXoESOCn6wWApEyL8_ACDOCMoYoOwcjxDnPGOfsElyFsEUIMUbpCCwnsD6EqDsVbQNfdfzsN9D0Hi530Xb7DtbahbTWutVNtL2D1sG5M9prF61qYdW76Pv26BKuwYVRbdA3xzkGHy_Pq2qWLZbTeTVZZConNGZEiULkRlFNS1MSJihdI6RKTHDJ1booNpxTJgoiKEF5sSZY6A1V2BDBygTnY_Aw-Da-D8FrI3fedsofJEbytwl5aiKxdwO7U6FRrfHKNTb8CYTIS8QSlg2YTUm-T2flv2SRbJhcvdVyNs2ni5pX8j3x9wOvmiC3_d67FPif9z_RZ3az</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Kookos, Ioannis K</creator><creator>Perkins, John D</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991101</creationdate><title>A Systematic Method for Optimum Sensor Selection in Inferential Control Systems</title><author>Kookos, Ioannis K ; Perkins, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-2a9693fa4e47f725944b00a712178ab66d8845962942036b219ed4a1f29579443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Distillation</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kookos, Ioannis K</creatorcontrib><creatorcontrib>Perkins, John D</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kookos, Ioannis K</au><au>Perkins, John D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systematic Method for Optimum Sensor Selection in Inferential Control Systems</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1999-11-01</date><risdate>1999</risdate><volume>38</volume><issue>11</issue><spage>4299</spage><epage>4308</epage><pages>4299-4308</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>This paper considers the optimal selection of sensor locations in square inferential control systems, where the number of measurements employed is equal to the number of actuators. A mixed-integer linear programming (MILP) problem formulation is proposed based on the assumption that the control objectives can be related to the variability of certain process variables. The method is applied to three case studies including a methanol−water column, a deisobutanizer column, and a benzene, toluene, o-xylene column. The selection of tray temperatures for inferential composition control is the problem considered in these case studies. To investigate the validity of the proposed method, closed-loop simulations are carried out. The method is shown to provide a satisfactory answer to the optimum sensor selection problem.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie9902737</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 1999-11, Vol.38 (11), p.4299-4308 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ie9902737 |
source | ACS Publications |
subjects | Applied sciences Chemical engineering Distillation Exact sciences and technology |
title | A Systematic Method for Optimum Sensor Selection in Inferential Control Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systematic%20Method%20for%20Optimum%20Sensor%20Selection%20in%20Inferential%20Control%20Systems&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kookos,%20Ioannis%20K&rft.date=1999-11-01&rft.volume=38&rft.issue=11&rft.spage=4299&rft.epage=4308&rft.pages=4299-4308&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie9902737&rft_dat=%3Cistex_cross%3Eark_67375_TPS_HG3GLS8C_R%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |