A Systematic Method for Optimum Sensor Selection in Inferential Control Systems

This paper considers the optimal selection of sensor locations in square inferential control systems, where the number of measurements employed is equal to the number of actuators. A mixed-integer linear programming (MILP) problem formulation is proposed based on the assumption that the control obje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 1999-11, Vol.38 (11), p.4299-4308
Hauptverfasser: Kookos, Ioannis K, Perkins, John D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4308
container_issue 11
container_start_page 4299
container_title Industrial & engineering chemistry research
container_volume 38
creator Kookos, Ioannis K
Perkins, John D
description This paper considers the optimal selection of sensor locations in square inferential control systems, where the number of measurements employed is equal to the number of actuators. A mixed-integer linear programming (MILP) problem formulation is proposed based on the assumption that the control objectives can be related to the variability of certain process variables. The method is applied to three case studies including a methanol−water column, a deisobutanizer column, and a benzene, toluene, o-xylene column. The selection of tray temperatures for inferential composition control is the problem considered in these case studies. To investigate the validity of the proposed method, closed-loop simulations are carried out. The method is shown to provide a satisfactory answer to the optimum sensor selection problem.
doi_str_mv 10.1021/ie9902737
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie9902737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_HG3GLS8C_R</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-2a9693fa4e47f725944b00a712178ab66d8845962942036b219ed4a1f29579443</originalsourceid><addsrcrecordid>eNptkEFLAzEQhYMoWKsH_0EOevCwmmST3eRYFm0LlYpbzyHdJpi6my1JCvbfG9lSL56GYb73hvcAuMXoESOCn6wWApEyL8_ACDOCMoYoOwcjxDnPGOfsElyFsEUIMUbpCCwnsD6EqDsVbQNfdfzsN9D0Hi530Xb7DtbahbTWutVNtL2D1sG5M9prF61qYdW76Pv26BKuwYVRbdA3xzkGHy_Pq2qWLZbTeTVZZConNGZEiULkRlFNS1MSJihdI6RKTHDJ1booNpxTJgoiKEF5sSZY6A1V2BDBygTnY_Aw-Da-D8FrI3fedsofJEbytwl5aiKxdwO7U6FRrfHKNTb8CYTIS8QSlg2YTUm-T2flv2SRbJhcvdVyNs2ni5pX8j3x9wOvmiC3_d67FPif9z_RZ3az</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Systematic Method for Optimum Sensor Selection in Inferential Control Systems</title><source>ACS Publications</source><creator>Kookos, Ioannis K ; Perkins, John D</creator><creatorcontrib>Kookos, Ioannis K ; Perkins, John D</creatorcontrib><description>This paper considers the optimal selection of sensor locations in square inferential control systems, where the number of measurements employed is equal to the number of actuators. A mixed-integer linear programming (MILP) problem formulation is proposed based on the assumption that the control objectives can be related to the variability of certain process variables. The method is applied to three case studies including a methanol−water column, a deisobutanizer column, and a benzene, toluene, o-xylene column. The selection of tray temperatures for inferential composition control is the problem considered in these case studies. To investigate the validity of the proposed method, closed-loop simulations are carried out. The method is shown to provide a satisfactory answer to the optimum sensor selection problem.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie9902737</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Distillation ; Exact sciences and technology</subject><ispartof>Industrial &amp; engineering chemistry research, 1999-11, Vol.38 (11), p.4299-4308</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-2a9693fa4e47f725944b00a712178ab66d8845962942036b219ed4a1f29579443</citedby><cites>FETCH-LOGICAL-a324t-2a9693fa4e47f725944b00a712178ab66d8845962942036b219ed4a1f29579443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie9902737$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie9902737$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1993705$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kookos, Ioannis K</creatorcontrib><creatorcontrib>Perkins, John D</creatorcontrib><title>A Systematic Method for Optimum Sensor Selection in Inferential Control Systems</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>This paper considers the optimal selection of sensor locations in square inferential control systems, where the number of measurements employed is equal to the number of actuators. A mixed-integer linear programming (MILP) problem formulation is proposed based on the assumption that the control objectives can be related to the variability of certain process variables. The method is applied to three case studies including a methanol−water column, a deisobutanizer column, and a benzene, toluene, o-xylene column. The selection of tray temperatures for inferential composition control is the problem considered in these case studies. To investigate the validity of the proposed method, closed-loop simulations are carried out. The method is shown to provide a satisfactory answer to the optimum sensor selection problem.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Distillation</subject><subject>Exact sciences and technology</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNptkEFLAzEQhYMoWKsH_0EOevCwmmST3eRYFm0LlYpbzyHdJpi6my1JCvbfG9lSL56GYb73hvcAuMXoESOCn6wWApEyL8_ACDOCMoYoOwcjxDnPGOfsElyFsEUIMUbpCCwnsD6EqDsVbQNfdfzsN9D0Hi530Xb7DtbahbTWutVNtL2D1sG5M9prF61qYdW76Pv26BKuwYVRbdA3xzkGHy_Pq2qWLZbTeTVZZConNGZEiULkRlFNS1MSJihdI6RKTHDJ1booNpxTJgoiKEF5sSZY6A1V2BDBygTnY_Aw-Da-D8FrI3fedsofJEbytwl5aiKxdwO7U6FRrfHKNTb8CYTIS8QSlg2YTUm-T2flv2SRbJhcvdVyNs2ni5pX8j3x9wOvmiC3_d67FPif9z_RZ3az</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Kookos, Ioannis K</creator><creator>Perkins, John D</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991101</creationdate><title>A Systematic Method for Optimum Sensor Selection in Inferential Control Systems</title><author>Kookos, Ioannis K ; Perkins, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-2a9693fa4e47f725944b00a712178ab66d8845962942036b219ed4a1f29579443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Distillation</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kookos, Ioannis K</creatorcontrib><creatorcontrib>Perkins, John D</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kookos, Ioannis K</au><au>Perkins, John D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systematic Method for Optimum Sensor Selection in Inferential Control Systems</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1999-11-01</date><risdate>1999</risdate><volume>38</volume><issue>11</issue><spage>4299</spage><epage>4308</epage><pages>4299-4308</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>This paper considers the optimal selection of sensor locations in square inferential control systems, where the number of measurements employed is equal to the number of actuators. A mixed-integer linear programming (MILP) problem formulation is proposed based on the assumption that the control objectives can be related to the variability of certain process variables. The method is applied to three case studies including a methanol−water column, a deisobutanizer column, and a benzene, toluene, o-xylene column. The selection of tray temperatures for inferential composition control is the problem considered in these case studies. To investigate the validity of the proposed method, closed-loop simulations are carried out. The method is shown to provide a satisfactory answer to the optimum sensor selection problem.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie9902737</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 1999-11, Vol.38 (11), p.4299-4308
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie9902737
source ACS Publications
subjects Applied sciences
Chemical engineering
Distillation
Exact sciences and technology
title A Systematic Method for Optimum Sensor Selection in Inferential Control Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systematic%20Method%20for%20Optimum%20Sensor%20Selection%20in%20Inferential%20Control%20Systems&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kookos,%20Ioannis%20K&rft.date=1999-11-01&rft.volume=38&rft.issue=11&rft.spage=4299&rft.epage=4308&rft.pages=4299-4308&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie9902737&rft_dat=%3Cistex_cross%3Eark_67375_TPS_HG3GLS8C_R%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true