Application of Gas−Liquid Film Theory to Base Hydrolysis of HMX Powder and HMX-Based Plastic-Bonded Explosives Using Sodium Carbonate
Sodium carbonate (Na2CO3) is identified as a hydrolysis reagent for decomposing HMX and HMX-based explosives to water-soluble, nonenergetic products. The reaction kinetics of Na2CO3 hydrolysis are examined, and a reaction rate model is developed. Greater than 99% of the explosive at an initial conce...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 1998-12, Vol.37 (12), p.4551-4559 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4559 |
---|---|
container_issue | 12 |
container_start_page | 4551 |
container_title | Industrial & engineering chemistry research |
container_volume | 37 |
creator | Bishop, Robert L Flesner, Raymond L Dell'Orco, Philip C Spontarelli, Terry Larson, Sheldon A Bell, David A |
description | Sodium carbonate (Na2CO3) is identified as a hydrolysis reagent for decomposing HMX and HMX-based explosives to water-soluble, nonenergetic products. The reaction kinetics of Na2CO3 hydrolysis are examined, and a reaction rate model is developed. Greater than 99% of the explosive at an initial concentration of 10 wt % PBX 9404 was destroyed in less than 5 min at 150 °C. The primary products from Na2CO3 hydrolysis were nitrite (NO2), formate (HCOO-), nitrate (NO3 -), and acetate (CH3COO-) ions, hexamethylenetetramine, (hexamine: C6H12N4), nitrogen gas (N2), nitrous oxide (N2O), and ammonia (NH3). The rate of hydrolysis was characterized for HMX powder and PBX 9404 molding powder from 110 to 150 °C. The rate was found to be dependent on both the chemical kinetics and the mass transfer resistance. Since the HMX particles are nonporous and external mass transfer dominates, gas−liquid film theory for fast chemical kinetics was used to model the reaction rate. |
doi_str_mv | 10.1021/ie980351a |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie980351a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b9566241</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-b0501775387f7ae58df461bcb0621d12dcc77a6113335d863eaa885dd0d6bc163</originalsourceid><addsrcrecordid>eNpt0MFuFCEYB3BiNHGtHnwDTPTgYSoMw8Ae27XbNVnrJp1G44V8A4ylzsIIs7b7BHr2EX0S2YypF0_kH37Axx-h55QcU1LSN87OJWGcwgM0o7wkBScVf4hmREpZcCn5Y_QkpRtCCOdVNUM_ToahdxpGFzwOHT6H9Pvnr7X7tnMGL12_xc21DXGPx4BPIVm82psY-n1y6cBX7z_hTbg1NmLw5hCLgzJ400ManS5Ogzc5nt0NfUjuu034Kjn_BV8G43ZbvIDYBg-jfYoeddAn--zveoSulmfNYlWsP5y_W5ysC2BSjEVLOKFC8Bw6AZZL01U1bXVL6pIaWhqthYCaUsYYN7JmFiB_2hhi6lbTmh2hF9O9IY-nknaj1dc6eG_1qFhJiSDZvJ6MjiGlaDs1RLeFuFeUqEPL6r7lbF9OdoCkoe8ieO3SvwM1qcR8nlkxMZdGe3e_DfGrqgUTXDWbS3XxsVk2bz836iL7V5MHndRN2EWfS_nP838A2G6Ydw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Gas−Liquid Film Theory to Base Hydrolysis of HMX Powder and HMX-Based Plastic-Bonded Explosives Using Sodium Carbonate</title><source>American Chemical Society Journals</source><creator>Bishop, Robert L ; Flesner, Raymond L ; Dell'Orco, Philip C ; Spontarelli, Terry ; Larson, Sheldon A ; Bell, David A</creator><creatorcontrib>Bishop, Robert L ; Flesner, Raymond L ; Dell'Orco, Philip C ; Spontarelli, Terry ; Larson, Sheldon A ; Bell, David A</creatorcontrib><description>Sodium carbonate (Na2CO3) is identified as a hydrolysis reagent for decomposing HMX and HMX-based explosives to water-soluble, nonenergetic products. The reaction kinetics of Na2CO3 hydrolysis are examined, and a reaction rate model is developed. Greater than 99% of the explosive at an initial concentration of 10 wt % PBX 9404 was destroyed in less than 5 min at 150 °C. The primary products from Na2CO3 hydrolysis were nitrite (NO2), formate (HCOO-), nitrate (NO3 -), and acetate (CH3COO-) ions, hexamethylenetetramine, (hexamine: C6H12N4), nitrogen gas (N2), nitrous oxide (N2O), and ammonia (NH3). The rate of hydrolysis was characterized for HMX powder and PBX 9404 molding powder from 110 to 150 °C. The rate was found to be dependent on both the chemical kinetics and the mass transfer resistance. Since the HMX particles are nonporous and external mass transfer dominates, gas−liquid film theory for fast chemical kinetics was used to model the reaction rate.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie980351a</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; CHEMICAL EXPLOSIVES ; CHEMICAL REACTION KINETICS ; DECOMPOSITION ; Exact sciences and technology ; HYDROLYSIS ; MATHEMATICAL MODELS ; MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE ; Other wastes and particular components of wastes ; Pollution ; SODIUM CARBONATES ; Wastes</subject><ispartof>Industrial & engineering chemistry research, 1998-12, Vol.37 (12), p.4551-4559</ispartof><rights>Copyright © 1998 American Chemical Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a387t-b0501775387f7ae58df461bcb0621d12dcc77a6113335d863eaa885dd0d6bc163</citedby><cites>FETCH-LOGICAL-a387t-b0501775387f7ae58df461bcb0621d12dcc77a6113335d863eaa885dd0d6bc163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie980351a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie980351a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1604799$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/321070$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bishop, Robert L</creatorcontrib><creatorcontrib>Flesner, Raymond L</creatorcontrib><creatorcontrib>Dell'Orco, Philip C</creatorcontrib><creatorcontrib>Spontarelli, Terry</creatorcontrib><creatorcontrib>Larson, Sheldon A</creatorcontrib><creatorcontrib>Bell, David A</creatorcontrib><title>Application of Gas−Liquid Film Theory to Base Hydrolysis of HMX Powder and HMX-Based Plastic-Bonded Explosives Using Sodium Carbonate</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Sodium carbonate (Na2CO3) is identified as a hydrolysis reagent for decomposing HMX and HMX-based explosives to water-soluble, nonenergetic products. The reaction kinetics of Na2CO3 hydrolysis are examined, and a reaction rate model is developed. Greater than 99% of the explosive at an initial concentration of 10 wt % PBX 9404 was destroyed in less than 5 min at 150 °C. The primary products from Na2CO3 hydrolysis were nitrite (NO2), formate (HCOO-), nitrate (NO3 -), and acetate (CH3COO-) ions, hexamethylenetetramine, (hexamine: C6H12N4), nitrogen gas (N2), nitrous oxide (N2O), and ammonia (NH3). The rate of hydrolysis was characterized for HMX powder and PBX 9404 molding powder from 110 to 150 °C. The rate was found to be dependent on both the chemical kinetics and the mass transfer resistance. Since the HMX particles are nonporous and external mass transfer dominates, gas−liquid film theory for fast chemical kinetics was used to model the reaction rate.</description><subject>Applied sciences</subject><subject>CHEMICAL EXPLOSIVES</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>DECOMPOSITION</subject><subject>Exact sciences and technology</subject><subject>HYDROLYSIS</subject><subject>MATHEMATICAL MODELS</subject><subject>MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE</subject><subject>Other wastes and particular components of wastes</subject><subject>Pollution</subject><subject>SODIUM CARBONATES</subject><subject>Wastes</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpt0MFuFCEYB3BiNHGtHnwDTPTgYSoMw8Ae27XbNVnrJp1G44V8A4ylzsIIs7b7BHr2EX0S2YypF0_kH37Axx-h55QcU1LSN87OJWGcwgM0o7wkBScVf4hmREpZcCn5Y_QkpRtCCOdVNUM_ToahdxpGFzwOHT6H9Pvnr7X7tnMGL12_xc21DXGPx4BPIVm82psY-n1y6cBX7z_hTbg1NmLw5hCLgzJ400ManS5Ogzc5nt0NfUjuu034Kjn_BV8G43ZbvIDYBg-jfYoeddAn--zveoSulmfNYlWsP5y_W5ysC2BSjEVLOKFC8Bw6AZZL01U1bXVL6pIaWhqthYCaUsYYN7JmFiB_2hhi6lbTmh2hF9O9IY-nknaj1dc6eG_1qFhJiSDZvJ6MjiGlaDs1RLeFuFeUqEPL6r7lbF9OdoCkoe8ieO3SvwM1qcR8nlkxMZdGe3e_DfGrqgUTXDWbS3XxsVk2bz836iL7V5MHndRN2EWfS_nP838A2G6Ydw</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Bishop, Robert L</creator><creator>Flesner, Raymond L</creator><creator>Dell'Orco, Philip C</creator><creator>Spontarelli, Terry</creator><creator>Larson, Sheldon A</creator><creator>Bell, David A</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19981201</creationdate><title>Application of Gas−Liquid Film Theory to Base Hydrolysis of HMX Powder and HMX-Based Plastic-Bonded Explosives Using Sodium Carbonate</title><author>Bishop, Robert L ; Flesner, Raymond L ; Dell'Orco, Philip C ; Spontarelli, Terry ; Larson, Sheldon A ; Bell, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-b0501775387f7ae58df461bcb0621d12dcc77a6113335d863eaa885dd0d6bc163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>CHEMICAL EXPLOSIVES</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>DECOMPOSITION</topic><topic>Exact sciences and technology</topic><topic>HYDROLYSIS</topic><topic>MATHEMATICAL MODELS</topic><topic>MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE</topic><topic>Other wastes and particular components of wastes</topic><topic>Pollution</topic><topic>SODIUM CARBONATES</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bishop, Robert L</creatorcontrib><creatorcontrib>Flesner, Raymond L</creatorcontrib><creatorcontrib>Dell'Orco, Philip C</creatorcontrib><creatorcontrib>Spontarelli, Terry</creatorcontrib><creatorcontrib>Larson, Sheldon A</creatorcontrib><creatorcontrib>Bell, David A</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bishop, Robert L</au><au>Flesner, Raymond L</au><au>Dell'Orco, Philip C</au><au>Spontarelli, Terry</au><au>Larson, Sheldon A</au><au>Bell, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Gas−Liquid Film Theory to Base Hydrolysis of HMX Powder and HMX-Based Plastic-Bonded Explosives Using Sodium Carbonate</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1998-12-01</date><risdate>1998</risdate><volume>37</volume><issue>12</issue><spage>4551</spage><epage>4559</epage><pages>4551-4559</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Sodium carbonate (Na2CO3) is identified as a hydrolysis reagent for decomposing HMX and HMX-based explosives to water-soluble, nonenergetic products. The reaction kinetics of Na2CO3 hydrolysis are examined, and a reaction rate model is developed. Greater than 99% of the explosive at an initial concentration of 10 wt % PBX 9404 was destroyed in less than 5 min at 150 °C. The primary products from Na2CO3 hydrolysis were nitrite (NO2), formate (HCOO-), nitrate (NO3 -), and acetate (CH3COO-) ions, hexamethylenetetramine, (hexamine: C6H12N4), nitrogen gas (N2), nitrous oxide (N2O), and ammonia (NH3). The rate of hydrolysis was characterized for HMX powder and PBX 9404 molding powder from 110 to 150 °C. The rate was found to be dependent on both the chemical kinetics and the mass transfer resistance. Since the HMX particles are nonporous and external mass transfer dominates, gas−liquid film theory for fast chemical kinetics was used to model the reaction rate.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie980351a</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 1998-12, Vol.37 (12), p.4551-4559 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ie980351a |
source | American Chemical Society Journals |
subjects | Applied sciences CHEMICAL EXPLOSIVES CHEMICAL REACTION KINETICS DECOMPOSITION Exact sciences and technology HYDROLYSIS MATHEMATICAL MODELS MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE Other wastes and particular components of wastes Pollution SODIUM CARBONATES Wastes |
title | Application of Gas−Liquid Film Theory to Base Hydrolysis of HMX Powder and HMX-Based Plastic-Bonded Explosives Using Sodium Carbonate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Gas%E2%88%92Liquid%20Film%20Theory%20to%20Base%20Hydrolysis%20of%20HMX%20Powder%20and%20HMX-Based%20Plastic-Bonded%20Explosives%20Using%20Sodium%20Carbonate&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Bishop,%20Robert%20L&rft.date=1998-12-01&rft.volume=37&rft.issue=12&rft.spage=4551&rft.epage=4559&rft.pages=4551-4559&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie980351a&rft_dat=%3Cacs_osti_%3Eb9566241%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |