Application of Gas−Liquid Film Theory to Base Hydrolysis of HMX Powder and HMX-Based Plastic-Bonded Explosives Using Sodium Carbonate

Sodium carbonate (Na2CO3) is identified as a hydrolysis reagent for decomposing HMX and HMX-based explosives to water-soluble, nonenergetic products. The reaction kinetics of Na2CO3 hydrolysis are examined, and a reaction rate model is developed. Greater than 99% of the explosive at an initial conce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 1998-12, Vol.37 (12), p.4551-4559
Hauptverfasser: Bishop, Robert L, Flesner, Raymond L, Dell'Orco, Philip C, Spontarelli, Terry, Larson, Sheldon A, Bell, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4559
container_issue 12
container_start_page 4551
container_title Industrial & engineering chemistry research
container_volume 37
creator Bishop, Robert L
Flesner, Raymond L
Dell'Orco, Philip C
Spontarelli, Terry
Larson, Sheldon A
Bell, David A
description Sodium carbonate (Na2CO3) is identified as a hydrolysis reagent for decomposing HMX and HMX-based explosives to water-soluble, nonenergetic products. The reaction kinetics of Na2CO3 hydrolysis are examined, and a reaction rate model is developed. Greater than 99% of the explosive at an initial concentration of 10 wt % PBX 9404 was destroyed in less than 5 min at 150 °C. The primary products from Na2CO3 hydrolysis were nitrite (NO2), formate (HCOO-), nitrate (NO3 -), and acetate (CH3COO-) ions, hexamethylenetetramine, (hexamine:  C6H12N4), nitrogen gas (N2), nitrous oxide (N2O), and ammonia (NH3). The rate of hydrolysis was characterized for HMX powder and PBX 9404 molding powder from 110 to 150 °C. The rate was found to be dependent on both the chemical kinetics and the mass transfer resistance. Since the HMX particles are nonporous and external mass transfer dominates, gas−liquid film theory for fast chemical kinetics was used to model the reaction rate.
doi_str_mv 10.1021/ie980351a
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie980351a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b9566241</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-b0501775387f7ae58df461bcb0621d12dcc77a6113335d863eaa885dd0d6bc163</originalsourceid><addsrcrecordid>eNpt0MFuFCEYB3BiNHGtHnwDTPTgYSoMw8Ae27XbNVnrJp1G44V8A4ylzsIIs7b7BHr2EX0S2YypF0_kH37Axx-h55QcU1LSN87OJWGcwgM0o7wkBScVf4hmREpZcCn5Y_QkpRtCCOdVNUM_ToahdxpGFzwOHT6H9Pvnr7X7tnMGL12_xc21DXGPx4BPIVm82psY-n1y6cBX7z_hTbg1NmLw5hCLgzJ400ManS5Ogzc5nt0NfUjuu034Kjn_BV8G43ZbvIDYBg-jfYoeddAn--zveoSulmfNYlWsP5y_W5ysC2BSjEVLOKFC8Bw6AZZL01U1bXVL6pIaWhqthYCaUsYYN7JmFiB_2hhi6lbTmh2hF9O9IY-nknaj1dc6eG_1qFhJiSDZvJ6MjiGlaDs1RLeFuFeUqEPL6r7lbF9OdoCkoe8ieO3SvwM1qcR8nlkxMZdGe3e_DfGrqgUTXDWbS3XxsVk2bz836iL7V5MHndRN2EWfS_nP838A2G6Ydw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Gas−Liquid Film Theory to Base Hydrolysis of HMX Powder and HMX-Based Plastic-Bonded Explosives Using Sodium Carbonate</title><source>American Chemical Society Journals</source><creator>Bishop, Robert L ; Flesner, Raymond L ; Dell'Orco, Philip C ; Spontarelli, Terry ; Larson, Sheldon A ; Bell, David A</creator><creatorcontrib>Bishop, Robert L ; Flesner, Raymond L ; Dell'Orco, Philip C ; Spontarelli, Terry ; Larson, Sheldon A ; Bell, David A</creatorcontrib><description>Sodium carbonate (Na2CO3) is identified as a hydrolysis reagent for decomposing HMX and HMX-based explosives to water-soluble, nonenergetic products. The reaction kinetics of Na2CO3 hydrolysis are examined, and a reaction rate model is developed. Greater than 99% of the explosive at an initial concentration of 10 wt % PBX 9404 was destroyed in less than 5 min at 150 °C. The primary products from Na2CO3 hydrolysis were nitrite (NO2), formate (HCOO-), nitrate (NO3 -), and acetate (CH3COO-) ions, hexamethylenetetramine, (hexamine:  C6H12N4), nitrogen gas (N2), nitrous oxide (N2O), and ammonia (NH3). The rate of hydrolysis was characterized for HMX powder and PBX 9404 molding powder from 110 to 150 °C. The rate was found to be dependent on both the chemical kinetics and the mass transfer resistance. Since the HMX particles are nonporous and external mass transfer dominates, gas−liquid film theory for fast chemical kinetics was used to model the reaction rate.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie980351a</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; CHEMICAL EXPLOSIVES ; CHEMICAL REACTION KINETICS ; DECOMPOSITION ; Exact sciences and technology ; HYDROLYSIS ; MATHEMATICAL MODELS ; MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE ; Other wastes and particular components of wastes ; Pollution ; SODIUM CARBONATES ; Wastes</subject><ispartof>Industrial &amp; engineering chemistry research, 1998-12, Vol.37 (12), p.4551-4559</ispartof><rights>Copyright © 1998 American Chemical Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a387t-b0501775387f7ae58df461bcb0621d12dcc77a6113335d863eaa885dd0d6bc163</citedby><cites>FETCH-LOGICAL-a387t-b0501775387f7ae58df461bcb0621d12dcc77a6113335d863eaa885dd0d6bc163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie980351a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie980351a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1604799$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/321070$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bishop, Robert L</creatorcontrib><creatorcontrib>Flesner, Raymond L</creatorcontrib><creatorcontrib>Dell'Orco, Philip C</creatorcontrib><creatorcontrib>Spontarelli, Terry</creatorcontrib><creatorcontrib>Larson, Sheldon A</creatorcontrib><creatorcontrib>Bell, David A</creatorcontrib><title>Application of Gas−Liquid Film Theory to Base Hydrolysis of HMX Powder and HMX-Based Plastic-Bonded Explosives Using Sodium Carbonate</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Sodium carbonate (Na2CO3) is identified as a hydrolysis reagent for decomposing HMX and HMX-based explosives to water-soluble, nonenergetic products. The reaction kinetics of Na2CO3 hydrolysis are examined, and a reaction rate model is developed. Greater than 99% of the explosive at an initial concentration of 10 wt % PBX 9404 was destroyed in less than 5 min at 150 °C. The primary products from Na2CO3 hydrolysis were nitrite (NO2), formate (HCOO-), nitrate (NO3 -), and acetate (CH3COO-) ions, hexamethylenetetramine, (hexamine:  C6H12N4), nitrogen gas (N2), nitrous oxide (N2O), and ammonia (NH3). The rate of hydrolysis was characterized for HMX powder and PBX 9404 molding powder from 110 to 150 °C. The rate was found to be dependent on both the chemical kinetics and the mass transfer resistance. Since the HMX particles are nonporous and external mass transfer dominates, gas−liquid film theory for fast chemical kinetics was used to model the reaction rate.</description><subject>Applied sciences</subject><subject>CHEMICAL EXPLOSIVES</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>DECOMPOSITION</subject><subject>Exact sciences and technology</subject><subject>HYDROLYSIS</subject><subject>MATHEMATICAL MODELS</subject><subject>MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE</subject><subject>Other wastes and particular components of wastes</subject><subject>Pollution</subject><subject>SODIUM CARBONATES</subject><subject>Wastes</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpt0MFuFCEYB3BiNHGtHnwDTPTgYSoMw8Ae27XbNVnrJp1G44V8A4ylzsIIs7b7BHr2EX0S2YypF0_kH37Axx-h55QcU1LSN87OJWGcwgM0o7wkBScVf4hmREpZcCn5Y_QkpRtCCOdVNUM_ToahdxpGFzwOHT6H9Pvnr7X7tnMGL12_xc21DXGPx4BPIVm82psY-n1y6cBX7z_hTbg1NmLw5hCLgzJ400ManS5Ogzc5nt0NfUjuu034Kjn_BV8G43ZbvIDYBg-jfYoeddAn--zveoSulmfNYlWsP5y_W5ysC2BSjEVLOKFC8Bw6AZZL01U1bXVL6pIaWhqthYCaUsYYN7JmFiB_2hhi6lbTmh2hF9O9IY-nknaj1dc6eG_1qFhJiSDZvJ6MjiGlaDs1RLeFuFeUqEPL6r7lbF9OdoCkoe8ieO3SvwM1qcR8nlkxMZdGe3e_DfGrqgUTXDWbS3XxsVk2bz836iL7V5MHndRN2EWfS_nP838A2G6Ydw</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Bishop, Robert L</creator><creator>Flesner, Raymond L</creator><creator>Dell'Orco, Philip C</creator><creator>Spontarelli, Terry</creator><creator>Larson, Sheldon A</creator><creator>Bell, David A</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19981201</creationdate><title>Application of Gas−Liquid Film Theory to Base Hydrolysis of HMX Powder and HMX-Based Plastic-Bonded Explosives Using Sodium Carbonate</title><author>Bishop, Robert L ; Flesner, Raymond L ; Dell'Orco, Philip C ; Spontarelli, Terry ; Larson, Sheldon A ; Bell, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-b0501775387f7ae58df461bcb0621d12dcc77a6113335d863eaa885dd0d6bc163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>CHEMICAL EXPLOSIVES</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>DECOMPOSITION</topic><topic>Exact sciences and technology</topic><topic>HYDROLYSIS</topic><topic>MATHEMATICAL MODELS</topic><topic>MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE</topic><topic>Other wastes and particular components of wastes</topic><topic>Pollution</topic><topic>SODIUM CARBONATES</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bishop, Robert L</creatorcontrib><creatorcontrib>Flesner, Raymond L</creatorcontrib><creatorcontrib>Dell'Orco, Philip C</creatorcontrib><creatorcontrib>Spontarelli, Terry</creatorcontrib><creatorcontrib>Larson, Sheldon A</creatorcontrib><creatorcontrib>Bell, David A</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bishop, Robert L</au><au>Flesner, Raymond L</au><au>Dell'Orco, Philip C</au><au>Spontarelli, Terry</au><au>Larson, Sheldon A</au><au>Bell, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Gas−Liquid Film Theory to Base Hydrolysis of HMX Powder and HMX-Based Plastic-Bonded Explosives Using Sodium Carbonate</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1998-12-01</date><risdate>1998</risdate><volume>37</volume><issue>12</issue><spage>4551</spage><epage>4559</epage><pages>4551-4559</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Sodium carbonate (Na2CO3) is identified as a hydrolysis reagent for decomposing HMX and HMX-based explosives to water-soluble, nonenergetic products. The reaction kinetics of Na2CO3 hydrolysis are examined, and a reaction rate model is developed. Greater than 99% of the explosive at an initial concentration of 10 wt % PBX 9404 was destroyed in less than 5 min at 150 °C. The primary products from Na2CO3 hydrolysis were nitrite (NO2), formate (HCOO-), nitrate (NO3 -), and acetate (CH3COO-) ions, hexamethylenetetramine, (hexamine:  C6H12N4), nitrogen gas (N2), nitrous oxide (N2O), and ammonia (NH3). The rate of hydrolysis was characterized for HMX powder and PBX 9404 molding powder from 110 to 150 °C. The rate was found to be dependent on both the chemical kinetics and the mass transfer resistance. Since the HMX particles are nonporous and external mass transfer dominates, gas−liquid film theory for fast chemical kinetics was used to model the reaction rate.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie980351a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 1998-12, Vol.37 (12), p.4551-4559
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie980351a
source American Chemical Society Journals
subjects Applied sciences
CHEMICAL EXPLOSIVES
CHEMICAL REACTION KINETICS
DECOMPOSITION
Exact sciences and technology
HYDROLYSIS
MATHEMATICAL MODELS
MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE
Other wastes and particular components of wastes
Pollution
SODIUM CARBONATES
Wastes
title Application of Gas−Liquid Film Theory to Base Hydrolysis of HMX Powder and HMX-Based Plastic-Bonded Explosives Using Sodium Carbonate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Gas%E2%88%92Liquid%20Film%20Theory%20to%20Base%20Hydrolysis%20of%20HMX%20Powder%20and%20HMX-Based%20Plastic-Bonded%20Explosives%20Using%20Sodium%20Carbonate&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Bishop,%20Robert%20L&rft.date=1998-12-01&rft.volume=37&rft.issue=12&rft.spage=4551&rft.epage=4559&rft.pages=4551-4559&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie980351a&rft_dat=%3Cacs_osti_%3Eb9566241%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true