Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity

Gas permeation experiments of O2 and N2 were performed with conducting polyaniline (PANi) composite membranes prepared by using a porous nylon membrane as a support. PANi composite membranes were easily obtained by a novel solvent welding process. Doping, dedoping, and redoping kinetics of PANi comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 1999-05, Vol.38 (5), p.1917-1924
Hauptverfasser: Lee, Young Moo, Ha, Seong Yong, Lee, Yeon Keun, Suh, Dong Hack, Hong, Sung Yeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1924
container_issue 5
container_start_page 1917
container_title Industrial & engineering chemistry research
container_volume 38
creator Lee, Young Moo
Ha, Seong Yong
Lee, Yeon Keun
Suh, Dong Hack
Hong, Sung Yeon
description Gas permeation experiments of O2 and N2 were performed with conducting polyaniline (PANi) composite membranes prepared by using a porous nylon membrane as a support. PANi composite membranes were easily obtained by a novel solvent welding process. Doping, dedoping, and redoping kinetics of PANi composite membranes were studied by calculating the [Cl]/[N] content using elemental analysis. After doping and dedoping processes, the permeability of a dedoped PANi membrane decreased while selectivity slightly increased, probably because of the changes in morphology of PANi. d spacing of the PANi film decreased from 4.89 to 3.67 Å after doping, dedoping, and redoping. As redoping continued, the degree of doping increased while the d spacing decreased, resulting in a dramatic increase in selectivity of a PANi membrane. The highest O2/N2 selectivity and permeability we obtained from PANi redoped for 2 h were 28 and 0.13 barrer, respectively. O2/N2 permeation experiments with different upstream pressure and temperature were carried out to study the permeation behavior of a PANi membrane.
doi_str_mv 10.1021/ie980259e
format Article
fullrecord <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie980259e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_S3DL7HGH_V</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-47b3811abb1e217ec1d35f1899b8e0e56242d14ca30e3ad819a224dced3471603</originalsourceid><addsrcrecordid>eNptkE9P4zAQxS3ESpTuHvgGQYLDHtL1nzh2jqgsLVJXrVSWq-U4U-qSOpXtAv32GILgwmmkeb95M_MQOiN4RDAlfyxUElNewREaEE5xznHBj9EASylzLiU_QachbDDGnBfFAG0mOmRL2Gmvo-1cFte-2z-ss3Hnmr2J9gmyRdcetuCzf7CtvXYQRhkdvXe1s6118KVkzzaus6lNBvOXwwO4ZN3Cm42Nh5_ox0q3AX591CH6f_P3bjzNZ_PJ7fhqlmsmRcwLUTNJiK5rApQIMKRhfEVkVdUSMPCSFrQhhdEMA9ONJJWmtGgMNKwQpMRsiM573y5Eq4KxEczadM6lQxTjtCxlYn73jPFdCB5WauftVvuDIli9Bak-g0zsRc_udDC6XaVPjQ1fA0IQTqqE5T1mQ4SXT1n7R1UKJri6WyzVkl3PxHQyVfeJv-x5bYLadHvvUijfrH8FGm-N_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity</title><source>American Chemical Society Journals</source><creator>Lee, Young Moo ; Ha, Seong Yong ; Lee, Yeon Keun ; Suh, Dong Hack ; Hong, Sung Yeon</creator><creatorcontrib>Lee, Young Moo ; Ha, Seong Yong ; Lee, Yeon Keun ; Suh, Dong Hack ; Hong, Sung Yeon</creatorcontrib><description>Gas permeation experiments of O2 and N2 were performed with conducting polyaniline (PANi) composite membranes prepared by using a porous nylon membrane as a support. PANi composite membranes were easily obtained by a novel solvent welding process. Doping, dedoping, and redoping kinetics of PANi composite membranes were studied by calculating the [Cl]/[N] content using elemental analysis. After doping and dedoping processes, the permeability of a dedoped PANi membrane decreased while selectivity slightly increased, probably because of the changes in morphology of PANi. d spacing of the PANi film decreased from 4.89 to 3.67 Å after doping, dedoping, and redoping. As redoping continued, the degree of doping increased while the d spacing decreased, resulting in a dramatic increase in selectivity of a PANi membrane. The highest O2/N2 selectivity and permeability we obtained from PANi redoped for 2 h were 28 and 0.13 barrer, respectively. O2/N2 permeation experiments with different upstream pressure and temperature were carried out to study the permeation behavior of a PANi membrane.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie980259e</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>ANILINE ; Applied sciences ; Chemical engineering ; ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; Membrane separation (reverse osmosis, dialysis...) ; MEMBRANES ; MOLECULAR SIEVES ; NITROGEN ; ORGANIC POLYMERS ; OXYGEN ; PERMEABILITY ; Polymer industry, paints, wood ; SEPARATION PROCESSES ; Technology of polymers</subject><ispartof>Industrial &amp; engineering chemistry research, 1999-05, Vol.38 (5), p.1917-1924</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a387t-47b3811abb1e217ec1d35f1899b8e0e56242d14ca30e3ad819a224dced3471603</citedby><cites>FETCH-LOGICAL-a387t-47b3811abb1e217ec1d35f1899b8e0e56242d14ca30e3ad819a224dced3471603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie980259e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie980259e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,886,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1771519$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/352668$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Young Moo</creatorcontrib><creatorcontrib>Ha, Seong Yong</creatorcontrib><creatorcontrib>Lee, Yeon Keun</creatorcontrib><creatorcontrib>Suh, Dong Hack</creatorcontrib><creatorcontrib>Hong, Sung Yeon</creatorcontrib><title>Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Gas permeation experiments of O2 and N2 were performed with conducting polyaniline (PANi) composite membranes prepared by using a porous nylon membrane as a support. PANi composite membranes were easily obtained by a novel solvent welding process. Doping, dedoping, and redoping kinetics of PANi composite membranes were studied by calculating the [Cl]/[N] content using elemental analysis. After doping and dedoping processes, the permeability of a dedoped PANi membrane decreased while selectivity slightly increased, probably because of the changes in morphology of PANi. d spacing of the PANi film decreased from 4.89 to 3.67 Å after doping, dedoping, and redoping. As redoping continued, the degree of doping increased while the d spacing decreased, resulting in a dramatic increase in selectivity of a PANi membrane. The highest O2/N2 selectivity and permeability we obtained from PANi redoped for 2 h were 28 and 0.13 barrer, respectively. O2/N2 permeation experiments with different upstream pressure and temperature were carried out to study the permeation behavior of a PANi membrane.</description><subject>ANILINE</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>MEMBRANES</subject><subject>MOLECULAR SIEVES</subject><subject>NITROGEN</subject><subject>ORGANIC POLYMERS</subject><subject>OXYGEN</subject><subject>PERMEABILITY</subject><subject>Polymer industry, paints, wood</subject><subject>SEPARATION PROCESSES</subject><subject>Technology of polymers</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNptkE9P4zAQxS3ESpTuHvgGQYLDHtL1nzh2jqgsLVJXrVSWq-U4U-qSOpXtAv32GILgwmmkeb95M_MQOiN4RDAlfyxUElNewREaEE5xznHBj9EASylzLiU_QachbDDGnBfFAG0mOmRL2Gmvo-1cFte-2z-ss3Hnmr2J9gmyRdcetuCzf7CtvXYQRhkdvXe1s6118KVkzzaus6lNBvOXwwO4ZN3Cm42Nh5_ox0q3AX591CH6f_P3bjzNZ_PJ7fhqlmsmRcwLUTNJiK5rApQIMKRhfEVkVdUSMPCSFrQhhdEMA9ONJJWmtGgMNKwQpMRsiM573y5Eq4KxEczadM6lQxTjtCxlYn73jPFdCB5WauftVvuDIli9Bak-g0zsRc_udDC6XaVPjQ1fA0IQTqqE5T1mQ4SXT1n7R1UKJri6WyzVkl3PxHQyVfeJv-x5bYLadHvvUijfrH8FGm-N_A</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Lee, Young Moo</creator><creator>Ha, Seong Yong</creator><creator>Lee, Yeon Keun</creator><creator>Suh, Dong Hack</creator><creator>Hong, Sung Yeon</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19990501</creationdate><title>Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity</title><author>Lee, Young Moo ; Ha, Seong Yong ; Lee, Yeon Keun ; Suh, Dong Hack ; Hong, Sung Yeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-47b3811abb1e217ec1d35f1899b8e0e56242d14ca30e3ad819a224dced3471603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>ANILINE</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>MEMBRANES</topic><topic>MOLECULAR SIEVES</topic><topic>NITROGEN</topic><topic>ORGANIC POLYMERS</topic><topic>OXYGEN</topic><topic>PERMEABILITY</topic><topic>Polymer industry, paints, wood</topic><topic>SEPARATION PROCESSES</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Young Moo</creatorcontrib><creatorcontrib>Ha, Seong Yong</creatorcontrib><creatorcontrib>Lee, Yeon Keun</creatorcontrib><creatorcontrib>Suh, Dong Hack</creatorcontrib><creatorcontrib>Hong, Sung Yeon</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Young Moo</au><au>Ha, Seong Yong</au><au>Lee, Yeon Keun</au><au>Suh, Dong Hack</au><au>Hong, Sung Yeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1999-05-01</date><risdate>1999</risdate><volume>38</volume><issue>5</issue><spage>1917</spage><epage>1924</epage><pages>1917-1924</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Gas permeation experiments of O2 and N2 were performed with conducting polyaniline (PANi) composite membranes prepared by using a porous nylon membrane as a support. PANi composite membranes were easily obtained by a novel solvent welding process. Doping, dedoping, and redoping kinetics of PANi composite membranes were studied by calculating the [Cl]/[N] content using elemental analysis. After doping and dedoping processes, the permeability of a dedoped PANi membrane decreased while selectivity slightly increased, probably because of the changes in morphology of PANi. d spacing of the PANi film decreased from 4.89 to 3.67 Å after doping, dedoping, and redoping. As redoping continued, the degree of doping increased while the d spacing decreased, resulting in a dramatic increase in selectivity of a PANi membrane. The highest O2/N2 selectivity and permeability we obtained from PANi redoped for 2 h were 28 and 0.13 barrer, respectively. O2/N2 permeation experiments with different upstream pressure and temperature were carried out to study the permeation behavior of a PANi membrane.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie980259e</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 1999-05, Vol.38 (5), p.1917-1924
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie980259e
source American Chemical Society Journals
subjects ANILINE
Applied sciences
Chemical engineering
ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION
Exact sciences and technology
Exchange resins and membranes
Forms of application and semi-finished materials
Membrane separation (reverse osmosis, dialysis...)
MEMBRANES
MOLECULAR SIEVES
NITROGEN
ORGANIC POLYMERS
OXYGEN
PERMEABILITY
Polymer industry, paints, wood
SEPARATION PROCESSES
Technology of polymers
title Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20Separation%20through%20Conductive%20Polymer%20Membranes.%202.%20Polyaniline%20Membranes%20with%20High%20Oxygen%20Selectivity&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Lee,%20Young%20Moo&rft.date=1999-05-01&rft.volume=38&rft.issue=5&rft.spage=1917&rft.epage=1924&rft.pages=1917-1924&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie980259e&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_S3DL7HGH_V%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true