Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity
Gas permeation experiments of O2 and N2 were performed with conducting polyaniline (PANi) composite membranes prepared by using a porous nylon membrane as a support. PANi composite membranes were easily obtained by a novel solvent welding process. Doping, dedoping, and redoping kinetics of PANi comp...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 1999-05, Vol.38 (5), p.1917-1924 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1924 |
---|---|
container_issue | 5 |
container_start_page | 1917 |
container_title | Industrial & engineering chemistry research |
container_volume | 38 |
creator | Lee, Young Moo Ha, Seong Yong Lee, Yeon Keun Suh, Dong Hack Hong, Sung Yeon |
description | Gas permeation experiments of O2 and N2 were performed with conducting polyaniline (PANi) composite membranes prepared by using a porous nylon membrane as a support. PANi composite membranes were easily obtained by a novel solvent welding process. Doping, dedoping, and redoping kinetics of PANi composite membranes were studied by calculating the [Cl]/[N] content using elemental analysis. After doping and dedoping processes, the permeability of a dedoped PANi membrane decreased while selectivity slightly increased, probably because of the changes in morphology of PANi. d spacing of the PANi film decreased from 4.89 to 3.67 Å after doping, dedoping, and redoping. As redoping continued, the degree of doping increased while the d spacing decreased, resulting in a dramatic increase in selectivity of a PANi membrane. The highest O2/N2 selectivity and permeability we obtained from PANi redoped for 2 h were 28 and 0.13 barrer, respectively. O2/N2 permeation experiments with different upstream pressure and temperature were carried out to study the permeation behavior of a PANi membrane. |
doi_str_mv | 10.1021/ie980259e |
format | Article |
fullrecord | <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie980259e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_S3DL7HGH_V</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-47b3811abb1e217ec1d35f1899b8e0e56242d14ca30e3ad819a224dced3471603</originalsourceid><addsrcrecordid>eNptkE9P4zAQxS3ESpTuHvgGQYLDHtL1nzh2jqgsLVJXrVSWq-U4U-qSOpXtAv32GILgwmmkeb95M_MQOiN4RDAlfyxUElNewREaEE5xznHBj9EASylzLiU_QachbDDGnBfFAG0mOmRL2Gmvo-1cFte-2z-ss3Hnmr2J9gmyRdcetuCzf7CtvXYQRhkdvXe1s6118KVkzzaus6lNBvOXwwO4ZN3Cm42Nh5_ox0q3AX591CH6f_P3bjzNZ_PJ7fhqlmsmRcwLUTNJiK5rApQIMKRhfEVkVdUSMPCSFrQhhdEMA9ONJJWmtGgMNKwQpMRsiM573y5Eq4KxEczadM6lQxTjtCxlYn73jPFdCB5WauftVvuDIli9Bak-g0zsRc_udDC6XaVPjQ1fA0IQTqqE5T1mQ4SXT1n7R1UKJri6WyzVkl3PxHQyVfeJv-x5bYLadHvvUijfrH8FGm-N_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity</title><source>American Chemical Society Journals</source><creator>Lee, Young Moo ; Ha, Seong Yong ; Lee, Yeon Keun ; Suh, Dong Hack ; Hong, Sung Yeon</creator><creatorcontrib>Lee, Young Moo ; Ha, Seong Yong ; Lee, Yeon Keun ; Suh, Dong Hack ; Hong, Sung Yeon</creatorcontrib><description>Gas permeation experiments of O2 and N2 were performed with conducting polyaniline (PANi) composite membranes prepared by using a porous nylon membrane as a support. PANi composite membranes were easily obtained by a novel solvent welding process. Doping, dedoping, and redoping kinetics of PANi composite membranes were studied by calculating the [Cl]/[N] content using elemental analysis. After doping and dedoping processes, the permeability of a dedoped PANi membrane decreased while selectivity slightly increased, probably because of the changes in morphology of PANi. d spacing of the PANi film decreased from 4.89 to 3.67 Å after doping, dedoping, and redoping. As redoping continued, the degree of doping increased while the d spacing decreased, resulting in a dramatic increase in selectivity of a PANi membrane. The highest O2/N2 selectivity and permeability we obtained from PANi redoped for 2 h were 28 and 0.13 barrer, respectively. O2/N2 permeation experiments with different upstream pressure and temperature were carried out to study the permeation behavior of a PANi membrane.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie980259e</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>ANILINE ; Applied sciences ; Chemical engineering ; ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; Membrane separation (reverse osmosis, dialysis...) ; MEMBRANES ; MOLECULAR SIEVES ; NITROGEN ; ORGANIC POLYMERS ; OXYGEN ; PERMEABILITY ; Polymer industry, paints, wood ; SEPARATION PROCESSES ; Technology of polymers</subject><ispartof>Industrial & engineering chemistry research, 1999-05, Vol.38 (5), p.1917-1924</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a387t-47b3811abb1e217ec1d35f1899b8e0e56242d14ca30e3ad819a224dced3471603</citedby><cites>FETCH-LOGICAL-a387t-47b3811abb1e217ec1d35f1899b8e0e56242d14ca30e3ad819a224dced3471603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie980259e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie980259e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,886,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1771519$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/352668$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Young Moo</creatorcontrib><creatorcontrib>Ha, Seong Yong</creatorcontrib><creatorcontrib>Lee, Yeon Keun</creatorcontrib><creatorcontrib>Suh, Dong Hack</creatorcontrib><creatorcontrib>Hong, Sung Yeon</creatorcontrib><title>Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Gas permeation experiments of O2 and N2 were performed with conducting polyaniline (PANi) composite membranes prepared by using a porous nylon membrane as a support. PANi composite membranes were easily obtained by a novel solvent welding process. Doping, dedoping, and redoping kinetics of PANi composite membranes were studied by calculating the [Cl]/[N] content using elemental analysis. After doping and dedoping processes, the permeability of a dedoped PANi membrane decreased while selectivity slightly increased, probably because of the changes in morphology of PANi. d spacing of the PANi film decreased from 4.89 to 3.67 Å after doping, dedoping, and redoping. As redoping continued, the degree of doping increased while the d spacing decreased, resulting in a dramatic increase in selectivity of a PANi membrane. The highest O2/N2 selectivity and permeability we obtained from PANi redoped for 2 h were 28 and 0.13 barrer, respectively. O2/N2 permeation experiments with different upstream pressure and temperature were carried out to study the permeation behavior of a PANi membrane.</description><subject>ANILINE</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>MEMBRANES</subject><subject>MOLECULAR SIEVES</subject><subject>NITROGEN</subject><subject>ORGANIC POLYMERS</subject><subject>OXYGEN</subject><subject>PERMEABILITY</subject><subject>Polymer industry, paints, wood</subject><subject>SEPARATION PROCESSES</subject><subject>Technology of polymers</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNptkE9P4zAQxS3ESpTuHvgGQYLDHtL1nzh2jqgsLVJXrVSWq-U4U-qSOpXtAv32GILgwmmkeb95M_MQOiN4RDAlfyxUElNewREaEE5xznHBj9EASylzLiU_QachbDDGnBfFAG0mOmRL2Gmvo-1cFte-2z-ss3Hnmr2J9gmyRdcetuCzf7CtvXYQRhkdvXe1s6118KVkzzaus6lNBvOXwwO4ZN3Cm42Nh5_ox0q3AX591CH6f_P3bjzNZ_PJ7fhqlmsmRcwLUTNJiK5rApQIMKRhfEVkVdUSMPCSFrQhhdEMA9ONJJWmtGgMNKwQpMRsiM573y5Eq4KxEczadM6lQxTjtCxlYn73jPFdCB5WauftVvuDIli9Bak-g0zsRc_udDC6XaVPjQ1fA0IQTqqE5T1mQ4SXT1n7R1UKJri6WyzVkl3PxHQyVfeJv-x5bYLadHvvUijfrH8FGm-N_A</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Lee, Young Moo</creator><creator>Ha, Seong Yong</creator><creator>Lee, Yeon Keun</creator><creator>Suh, Dong Hack</creator><creator>Hong, Sung Yeon</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19990501</creationdate><title>Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity</title><author>Lee, Young Moo ; Ha, Seong Yong ; Lee, Yeon Keun ; Suh, Dong Hack ; Hong, Sung Yeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-47b3811abb1e217ec1d35f1899b8e0e56242d14ca30e3ad819a224dced3471603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>ANILINE</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>MEMBRANES</topic><topic>MOLECULAR SIEVES</topic><topic>NITROGEN</topic><topic>ORGANIC POLYMERS</topic><topic>OXYGEN</topic><topic>PERMEABILITY</topic><topic>Polymer industry, paints, wood</topic><topic>SEPARATION PROCESSES</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Young Moo</creatorcontrib><creatorcontrib>Ha, Seong Yong</creatorcontrib><creatorcontrib>Lee, Yeon Keun</creatorcontrib><creatorcontrib>Suh, Dong Hack</creatorcontrib><creatorcontrib>Hong, Sung Yeon</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Young Moo</au><au>Ha, Seong Yong</au><au>Lee, Yeon Keun</au><au>Suh, Dong Hack</au><au>Hong, Sung Yeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1999-05-01</date><risdate>1999</risdate><volume>38</volume><issue>5</issue><spage>1917</spage><epage>1924</epage><pages>1917-1924</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Gas permeation experiments of O2 and N2 were performed with conducting polyaniline (PANi) composite membranes prepared by using a porous nylon membrane as a support. PANi composite membranes were easily obtained by a novel solvent welding process. Doping, dedoping, and redoping kinetics of PANi composite membranes were studied by calculating the [Cl]/[N] content using elemental analysis. After doping and dedoping processes, the permeability of a dedoped PANi membrane decreased while selectivity slightly increased, probably because of the changes in morphology of PANi. d spacing of the PANi film decreased from 4.89 to 3.67 Å after doping, dedoping, and redoping. As redoping continued, the degree of doping increased while the d spacing decreased, resulting in a dramatic increase in selectivity of a PANi membrane. The highest O2/N2 selectivity and permeability we obtained from PANi redoped for 2 h were 28 and 0.13 barrer, respectively. O2/N2 permeation experiments with different upstream pressure and temperature were carried out to study the permeation behavior of a PANi membrane.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie980259e</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 1999-05, Vol.38 (5), p.1917-1924 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ie980259e |
source | American Chemical Society Journals |
subjects | ANILINE Applied sciences Chemical engineering ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Exact sciences and technology Exchange resins and membranes Forms of application and semi-finished materials Membrane separation (reverse osmosis, dialysis...) MEMBRANES MOLECULAR SIEVES NITROGEN ORGANIC POLYMERS OXYGEN PERMEABILITY Polymer industry, paints, wood SEPARATION PROCESSES Technology of polymers |
title | Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20Separation%20through%20Conductive%20Polymer%20Membranes.%202.%20Polyaniline%20Membranes%20with%20High%20Oxygen%20Selectivity&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Lee,%20Young%20Moo&rft.date=1999-05-01&rft.volume=38&rft.issue=5&rft.spage=1917&rft.epage=1924&rft.pages=1917-1924&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie980259e&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_S3DL7HGH_V%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |