Optimal Control of Inequality State Constrained Systems
To handle inequality state constraints in nonlinear optimal control problems, we propose a method of introducing an auxiliary state variable for each constraint. The derivatives of these state constraint variables are made positive if the constraint is violated, and zero if there is no constraint vi...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 1997-05, Vol.36 (5), p.1686-1694 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1694 |
---|---|
container_issue | 5 |
container_start_page | 1686 |
container_title | Industrial & engineering chemistry research |
container_volume | 36 |
creator | Mekarapiruk, Wichaya Luus, Rein |
description | To handle inequality state constraints in nonlinear optimal control problems, we propose a method of introducing an auxiliary state variable for each constraint. The derivatives of these state constraint variables are made positive if the constraint is violated, and zero if there is no constraint violation. By incorporating these state variables then as penalty functions in an augmented performance index, we can ensure that the inequality state constraints are satisfied everywhere inside the given time interval. The procedure, as illustrated and tested with three nonlinear optimal control problems, is found to work well even in the presence of many state constraints. |
doi_str_mv | 10.1021/ie960583e |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie960583e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b526302084</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-941aadde61e5c8db2683ed7a48acc755701cc15aa163fae702ba7b23093e1c103</originalsourceid><addsrcrecordid>eNptj7FOwzAQhi0EEqUw8AYZYGAInOOc7Y6oohSpUKQWic26Oo6UkibFdiX69qQK6sR0w__d3f8xds3hnkPGHyo3koBauBM24JhBipDjKRuA1jpFrfGcXYSwBgDEPB8wNd_GakN1Mm6b6Ns6acvkpXHfO6qruE8WkaI7ZCF6qhpXJIt9iG4TLtlZSXVwV39zyD4mT8vxNJ3Nn1_Gj7OUhISYjnJOVBROcodWF6tMdtUKRbkmaxWiAm4tRyIuRUlOQbYitcoEjITjloMYsrv-rvVtCN6VZuu7vn5vOJiDsTkad-xNz24pWKpLT42twnEhkygkxw5Le6zqTH6OMfkvI5VQaJbvC6MnM3ydfmbmreNve55sMOt255tO-J_3vzC2cIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal Control of Inequality State Constrained Systems</title><source>ACS Publications</source><creator>Mekarapiruk, Wichaya ; Luus, Rein</creator><creatorcontrib>Mekarapiruk, Wichaya ; Luus, Rein</creatorcontrib><description>To handle inequality state constraints in nonlinear optimal control problems, we propose a method of introducing an auxiliary state variable for each constraint. The derivatives of these state constraint variables are made positive if the constraint is violated, and zero if there is no constraint violation. By incorporating these state variables then as penalty functions in an augmented performance index, we can ensure that the inequality state constraints are satisfied everywhere inside the given time interval. The procedure, as illustrated and tested with three nonlinear optimal control problems, is found to work well even in the presence of many state constraints.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie960583e</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization ; Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>Industrial & engineering chemistry research, 1997-05, Vol.36 (5), p.1686-1694</ispartof><rights>Copyright © 1997 American Chemical Society</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-941aadde61e5c8db2683ed7a48acc755701cc15aa163fae702ba7b23093e1c103</citedby><cites>FETCH-LOGICAL-a360t-941aadde61e5c8db2683ed7a48acc755701cc15aa163fae702ba7b23093e1c103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie960583e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie960583e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2653615$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mekarapiruk, Wichaya</creatorcontrib><creatorcontrib>Luus, Rein</creatorcontrib><title>Optimal Control of Inequality State Constrained Systems</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>To handle inequality state constraints in nonlinear optimal control problems, we propose a method of introducing an auxiliary state variable for each constraint. The derivatives of these state constraint variables are made positive if the constraint is violated, and zero if there is no constraint violation. By incorporating these state variables then as penalty functions in an augmented performance index, we can ensure that the inequality state constraints are satisfied everywhere inside the given time interval. The procedure, as illustrated and tested with three nonlinear optimal control problems, is found to work well even in the presence of many state constraints.</description><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNptj7FOwzAQhi0EEqUw8AYZYGAInOOc7Y6oohSpUKQWic26Oo6UkibFdiX69qQK6sR0w__d3f8xds3hnkPGHyo3koBauBM24JhBipDjKRuA1jpFrfGcXYSwBgDEPB8wNd_GakN1Mm6b6Ns6acvkpXHfO6qruE8WkaI7ZCF6qhpXJIt9iG4TLtlZSXVwV39zyD4mT8vxNJ3Nn1_Gj7OUhISYjnJOVBROcodWF6tMdtUKRbkmaxWiAm4tRyIuRUlOQbYitcoEjITjloMYsrv-rvVtCN6VZuu7vn5vOJiDsTkad-xNz24pWKpLT42twnEhkygkxw5Le6zqTH6OMfkvI5VQaJbvC6MnM3ydfmbmreNve55sMOt255tO-J_3vzC2cIo</recordid><startdate>19970505</startdate><enddate>19970505</enddate><creator>Mekarapiruk, Wichaya</creator><creator>Luus, Rein</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970505</creationdate><title>Optimal Control of Inequality State Constrained Systems</title><author>Mekarapiruk, Wichaya ; Luus, Rein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-941aadde61e5c8db2683ed7a48acc755701cc15aa163fae702ba7b23093e1c103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mekarapiruk, Wichaya</creatorcontrib><creatorcontrib>Luus, Rein</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mekarapiruk, Wichaya</au><au>Luus, Rein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Control of Inequality State Constrained Systems</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1997-05-05</date><risdate>1997</risdate><volume>36</volume><issue>5</issue><spage>1686</spage><epage>1694</epage><pages>1686-1694</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>To handle inequality state constraints in nonlinear optimal control problems, we propose a method of introducing an auxiliary state variable for each constraint. The derivatives of these state constraint variables are made positive if the constraint is violated, and zero if there is no constraint violation. By incorporating these state variables then as penalty functions in an augmented performance index, we can ensure that the inequality state constraints are satisfied everywhere inside the given time interval. The procedure, as illustrated and tested with three nonlinear optimal control problems, is found to work well even in the presence of many state constraints.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie960583e</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 1997-05, Vol.36 (5), p.1686-1694 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ie960583e |
source | ACS Publications |
subjects | Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization Applied sciences Chemical engineering Exact sciences and technology |
title | Optimal Control of Inequality State Constrained Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Control%20of%20Inequality%20State%20Constrained%20Systems&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Mekarapiruk,%20Wichaya&rft.date=1997-05-05&rft.volume=36&rft.issue=5&rft.spage=1686&rft.epage=1694&rft.pages=1686-1694&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie960583e&rft_dat=%3Cacs_cross%3Eb526302084%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |