Optimal Control of Inequality State Constrained Systems

To handle inequality state constraints in nonlinear optimal control problems, we propose a method of introducing an auxiliary state variable for each constraint. The derivatives of these state constraint variables are made positive if the constraint is violated, and zero if there is no constraint vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 1997-05, Vol.36 (5), p.1686-1694
Hauptverfasser: Mekarapiruk, Wichaya, Luus, Rein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1694
container_issue 5
container_start_page 1686
container_title Industrial & engineering chemistry research
container_volume 36
creator Mekarapiruk, Wichaya
Luus, Rein
description To handle inequality state constraints in nonlinear optimal control problems, we propose a method of introducing an auxiliary state variable for each constraint. The derivatives of these state constraint variables are made positive if the constraint is violated, and zero if there is no constraint violation. By incorporating these state variables then as penalty functions in an augmented performance index, we can ensure that the inequality state constraints are satisfied everywhere inside the given time interval. The procedure, as illustrated and tested with three nonlinear optimal control problems, is found to work well even in the presence of many state constraints.
doi_str_mv 10.1021/ie960583e
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie960583e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b526302084</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-941aadde61e5c8db2683ed7a48acc755701cc15aa163fae702ba7b23093e1c103</originalsourceid><addsrcrecordid>eNptj7FOwzAQhi0EEqUw8AYZYGAInOOc7Y6oohSpUKQWic26Oo6UkibFdiX69qQK6sR0w__d3f8xds3hnkPGHyo3koBauBM24JhBipDjKRuA1jpFrfGcXYSwBgDEPB8wNd_GakN1Mm6b6Ns6acvkpXHfO6qruE8WkaI7ZCF6qhpXJIt9iG4TLtlZSXVwV39zyD4mT8vxNJ3Nn1_Gj7OUhISYjnJOVBROcodWF6tMdtUKRbkmaxWiAm4tRyIuRUlOQbYitcoEjITjloMYsrv-rvVtCN6VZuu7vn5vOJiDsTkad-xNz24pWKpLT42twnEhkygkxw5Le6zqTH6OMfkvI5VQaJbvC6MnM3ydfmbmreNve55sMOt255tO-J_3vzC2cIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal Control of Inequality State Constrained Systems</title><source>ACS Publications</source><creator>Mekarapiruk, Wichaya ; Luus, Rein</creator><creatorcontrib>Mekarapiruk, Wichaya ; Luus, Rein</creatorcontrib><description>To handle inequality state constraints in nonlinear optimal control problems, we propose a method of introducing an auxiliary state variable for each constraint. The derivatives of these state constraint variables are made positive if the constraint is violated, and zero if there is no constraint violation. By incorporating these state variables then as penalty functions in an augmented performance index, we can ensure that the inequality state constraints are satisfied everywhere inside the given time interval. The procedure, as illustrated and tested with three nonlinear optimal control problems, is found to work well even in the presence of many state constraints.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie960583e</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization ; Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>Industrial &amp; engineering chemistry research, 1997-05, Vol.36 (5), p.1686-1694</ispartof><rights>Copyright © 1997 American Chemical Society</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-941aadde61e5c8db2683ed7a48acc755701cc15aa163fae702ba7b23093e1c103</citedby><cites>FETCH-LOGICAL-a360t-941aadde61e5c8db2683ed7a48acc755701cc15aa163fae702ba7b23093e1c103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie960583e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie960583e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2653615$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mekarapiruk, Wichaya</creatorcontrib><creatorcontrib>Luus, Rein</creatorcontrib><title>Optimal Control of Inequality State Constrained Systems</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>To handle inequality state constraints in nonlinear optimal control problems, we propose a method of introducing an auxiliary state variable for each constraint. The derivatives of these state constraint variables are made positive if the constraint is violated, and zero if there is no constraint violation. By incorporating these state variables then as penalty functions in an augmented performance index, we can ensure that the inequality state constraints are satisfied everywhere inside the given time interval. The procedure, as illustrated and tested with three nonlinear optimal control problems, is found to work well even in the presence of many state constraints.</description><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNptj7FOwzAQhi0EEqUw8AYZYGAInOOc7Y6oohSpUKQWic26Oo6UkibFdiX69qQK6sR0w__d3f8xds3hnkPGHyo3koBauBM24JhBipDjKRuA1jpFrfGcXYSwBgDEPB8wNd_GakN1Mm6b6Ns6acvkpXHfO6qruE8WkaI7ZCF6qhpXJIt9iG4TLtlZSXVwV39zyD4mT8vxNJ3Nn1_Gj7OUhISYjnJOVBROcodWF6tMdtUKRbkmaxWiAm4tRyIuRUlOQbYitcoEjITjloMYsrv-rvVtCN6VZuu7vn5vOJiDsTkad-xNz24pWKpLT42twnEhkygkxw5Le6zqTH6OMfkvI5VQaJbvC6MnM3ydfmbmreNve55sMOt255tO-J_3vzC2cIo</recordid><startdate>19970505</startdate><enddate>19970505</enddate><creator>Mekarapiruk, Wichaya</creator><creator>Luus, Rein</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970505</creationdate><title>Optimal Control of Inequality State Constrained Systems</title><author>Mekarapiruk, Wichaya ; Luus, Rein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-941aadde61e5c8db2683ed7a48acc755701cc15aa163fae702ba7b23093e1c103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mekarapiruk, Wichaya</creatorcontrib><creatorcontrib>Luus, Rein</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mekarapiruk, Wichaya</au><au>Luus, Rein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Control of Inequality State Constrained Systems</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1997-05-05</date><risdate>1997</risdate><volume>36</volume><issue>5</issue><spage>1686</spage><epage>1694</epage><pages>1686-1694</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>To handle inequality state constraints in nonlinear optimal control problems, we propose a method of introducing an auxiliary state variable for each constraint. The derivatives of these state constraint variables are made positive if the constraint is violated, and zero if there is no constraint violation. By incorporating these state variables then as penalty functions in an augmented performance index, we can ensure that the inequality state constraints are satisfied everywhere inside the given time interval. The procedure, as illustrated and tested with three nonlinear optimal control problems, is found to work well even in the presence of many state constraints.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie960583e</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 1997-05, Vol.36 (5), p.1686-1694
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie960583e
source ACS Publications
subjects Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization
Applied sciences
Chemical engineering
Exact sciences and technology
title Optimal Control of Inequality State Constrained Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Control%20of%20Inequality%20State%20Constrained%20Systems&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Mekarapiruk,%20Wichaya&rft.date=1997-05-05&rft.volume=36&rft.issue=5&rft.spage=1686&rft.epage=1694&rft.pages=1686-1694&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie960583e&rft_dat=%3Cacs_cross%3Eb526302084%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true