Isoamylene Trimerization in Liquid-Phase over Ion Exchange Resins and Zeolites

Liquid-phase trimerization of 2-methyl-1-butene and 2-methyl-2-butene mixtures over solid acid catalysts was carried out in a batch-stirred tank reactor in the temperature range 333−373 K. Diisoamylenes and triisoamylenes were the main products. Cracking products among C6−C9 and C11−C14 were also ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2010-04, Vol.49 (8), p.3561-3570
Hauptverfasser: Granollers, Marta, Izquierdo, José F, Tejero, Javier, Iborra, Montserrat, Fité, Carles, Bringué, Roger, Cunill, Fidel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3570
container_issue 8
container_start_page 3561
container_title Industrial & engineering chemistry research
container_volume 49
creator Granollers, Marta
Izquierdo, José F
Tejero, Javier
Iborra, Montserrat
Fité, Carles
Bringué, Roger
Cunill, Fidel
description Liquid-phase trimerization of 2-methyl-1-butene and 2-methyl-2-butene mixtures over solid acid catalysts was carried out in a batch-stirred tank reactor in the temperature range 333−373 K. Diisoamylenes and triisoamylenes were the main products. Cracking products among C6−C9 and C11−C14 were also obtained under the assayed conditions. The catalityc performance of five different acidic ion exchange resins (Amberlyst 15, Amberlyst 35, Amberlyst 70, Purolite CT-252, Purolite CT-276) and four zeolites (H-BEA-25, H-FAU-30, H-FAU-6 and H-MOR-20) was assessed. Experimental results showed that Amberlyst 15 and H-FAU-30 were the best catalysts for isoamylene trimerization, with selectivities above 40% at 373 K. The most influencing physical properties of the catalysts on the selectivity toward dimers and trimers were acid capacity, acid strength, and specific surface area for resins, and microporous surface area for zeolites. Isoamylene trimerization extent was larger at higher temperature. The most probable mechanism of formation of these compounds involves the reaction between one molecule of dimer with one molecule of isoamylenes, although trimers could also be formed directly from three molecules of isoamylenes.
doi_str_mv 10.1021/ie901382p
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie901382p</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d161701580</sourcerecordid><originalsourceid>FETCH-LOGICAL-a326t-86e9ce2df56a42642a68e52d32ccbe105d43b223b91e2b2102d269f0631021373</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqUw8A-8MDAE7PMHzoiqApEqQKgsLJHjXKir1Cl2iyi_nlRFZWG64Z731T1HyDlnV5wBv_aYMy4MLA_IgCtgmWJSHZIBM8Zkyhh1TE5SmjPGlJJyQB6L1NnFpsWAdBr9AqP_tivfBeoDnfiPta-z55lNSLtPjLToF-MvN7PhHekLJh8StaGmb9i1foXplBw1tk149juH5PVuPB09ZJOn-2J0O8msAL3KjMbcIdSN0laClmC1QQW1AOcq5EzVUlQAoso5QgW9WQ06b5gWW0lxI4bkctfrYpdSxKZc9sfbuCk5K7dMuX9Ez17s2KVNzrZNtMH5tA8AaMGYFH-cdamcd-sYeoN_-n4AfAloiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isoamylene Trimerization in Liquid-Phase over Ion Exchange Resins and Zeolites</title><source>ACS Publications</source><creator>Granollers, Marta ; Izquierdo, José F ; Tejero, Javier ; Iborra, Montserrat ; Fité, Carles ; Bringué, Roger ; Cunill, Fidel</creator><creatorcontrib>Granollers, Marta ; Izquierdo, José F ; Tejero, Javier ; Iborra, Montserrat ; Fité, Carles ; Bringué, Roger ; Cunill, Fidel</creatorcontrib><description>Liquid-phase trimerization of 2-methyl-1-butene and 2-methyl-2-butene mixtures over solid acid catalysts was carried out in a batch-stirred tank reactor in the temperature range 333−373 K. Diisoamylenes and triisoamylenes were the main products. Cracking products among C6−C9 and C11−C14 were also obtained under the assayed conditions. The catalityc performance of five different acidic ion exchange resins (Amberlyst 15, Amberlyst 35, Amberlyst 70, Purolite CT-252, Purolite CT-276) and four zeolites (H-BEA-25, H-FAU-30, H-FAU-6 and H-MOR-20) was assessed. Experimental results showed that Amberlyst 15 and H-FAU-30 were the best catalysts for isoamylene trimerization, with selectivities above 40% at 373 K. The most influencing physical properties of the catalysts on the selectivity toward dimers and trimers were acid capacity, acid strength, and specific surface area for resins, and microporous surface area for zeolites. Isoamylene trimerization extent was larger at higher temperature. The most probable mechanism of formation of these compounds involves the reaction between one molecule of dimer with one molecule of isoamylenes, although trimers could also be formed directly from three molecules of isoamylenes.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie901382p</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Ion exchange ; Kinetics, Catalysis, and Reaction Engineering</subject><ispartof>Industrial &amp; engineering chemistry research, 2010-04, Vol.49 (8), p.3561-3570</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a326t-86e9ce2df56a42642a68e52d32ccbe105d43b223b91e2b2102d269f0631021373</citedby><cites>FETCH-LOGICAL-a326t-86e9ce2df56a42642a68e52d32ccbe105d43b223b91e2b2102d269f0631021373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie901382p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie901382p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22630043$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Granollers, Marta</creatorcontrib><creatorcontrib>Izquierdo, José F</creatorcontrib><creatorcontrib>Tejero, Javier</creatorcontrib><creatorcontrib>Iborra, Montserrat</creatorcontrib><creatorcontrib>Fité, Carles</creatorcontrib><creatorcontrib>Bringué, Roger</creatorcontrib><creatorcontrib>Cunill, Fidel</creatorcontrib><title>Isoamylene Trimerization in Liquid-Phase over Ion Exchange Resins and Zeolites</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Liquid-phase trimerization of 2-methyl-1-butene and 2-methyl-2-butene mixtures over solid acid catalysts was carried out in a batch-stirred tank reactor in the temperature range 333−373 K. Diisoamylenes and triisoamylenes were the main products. Cracking products among C6−C9 and C11−C14 were also obtained under the assayed conditions. The catalityc performance of five different acidic ion exchange resins (Amberlyst 15, Amberlyst 35, Amberlyst 70, Purolite CT-252, Purolite CT-276) and four zeolites (H-BEA-25, H-FAU-30, H-FAU-6 and H-MOR-20) was assessed. Experimental results showed that Amberlyst 15 and H-FAU-30 were the best catalysts for isoamylene trimerization, with selectivities above 40% at 373 K. The most influencing physical properties of the catalysts on the selectivity toward dimers and trimers were acid capacity, acid strength, and specific surface area for resins, and microporous surface area for zeolites. Isoamylene trimerization extent was larger at higher temperature. The most probable mechanism of formation of these compounds involves the reaction between one molecule of dimer with one molecule of isoamylenes, although trimers could also be formed directly from three molecules of isoamylenes.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Ion exchange</subject><subject>Kinetics, Catalysis, and Reaction Engineering</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EEqUw8A-8MDAE7PMHzoiqApEqQKgsLJHjXKir1Cl2iyi_nlRFZWG64Z731T1HyDlnV5wBv_aYMy4MLA_IgCtgmWJSHZIBM8Zkyhh1TE5SmjPGlJJyQB6L1NnFpsWAdBr9AqP_tivfBeoDnfiPta-z55lNSLtPjLToF-MvN7PhHekLJh8StaGmb9i1foXplBw1tk149juH5PVuPB09ZJOn-2J0O8msAL3KjMbcIdSN0laClmC1QQW1AOcq5EzVUlQAoso5QgW9WQ06b5gWW0lxI4bkctfrYpdSxKZc9sfbuCk5K7dMuX9Ez17s2KVNzrZNtMH5tA8AaMGYFH-cdamcd-sYeoN_-n4AfAloiA</recordid><startdate>20100421</startdate><enddate>20100421</enddate><creator>Granollers, Marta</creator><creator>Izquierdo, José F</creator><creator>Tejero, Javier</creator><creator>Iborra, Montserrat</creator><creator>Fité, Carles</creator><creator>Bringué, Roger</creator><creator>Cunill, Fidel</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100421</creationdate><title>Isoamylene Trimerization in Liquid-Phase over Ion Exchange Resins and Zeolites</title><author>Granollers, Marta ; Izquierdo, José F ; Tejero, Javier ; Iborra, Montserrat ; Fité, Carles ; Bringué, Roger ; Cunill, Fidel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a326t-86e9ce2df56a42642a68e52d32ccbe105d43b223b91e2b2102d269f0631021373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Ion exchange</topic><topic>Kinetics, Catalysis, and Reaction Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Granollers, Marta</creatorcontrib><creatorcontrib>Izquierdo, José F</creatorcontrib><creatorcontrib>Tejero, Javier</creatorcontrib><creatorcontrib>Iborra, Montserrat</creatorcontrib><creatorcontrib>Fité, Carles</creatorcontrib><creatorcontrib>Bringué, Roger</creatorcontrib><creatorcontrib>Cunill, Fidel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Granollers, Marta</au><au>Izquierdo, José F</au><au>Tejero, Javier</au><au>Iborra, Montserrat</au><au>Fité, Carles</au><au>Bringué, Roger</au><au>Cunill, Fidel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isoamylene Trimerization in Liquid-Phase over Ion Exchange Resins and Zeolites</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2010-04-21</date><risdate>2010</risdate><volume>49</volume><issue>8</issue><spage>3561</spage><epage>3570</epage><pages>3561-3570</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Liquid-phase trimerization of 2-methyl-1-butene and 2-methyl-2-butene mixtures over solid acid catalysts was carried out in a batch-stirred tank reactor in the temperature range 333−373 K. Diisoamylenes and triisoamylenes were the main products. Cracking products among C6−C9 and C11−C14 were also obtained under the assayed conditions. The catalityc performance of five different acidic ion exchange resins (Amberlyst 15, Amberlyst 35, Amberlyst 70, Purolite CT-252, Purolite CT-276) and four zeolites (H-BEA-25, H-FAU-30, H-FAU-6 and H-MOR-20) was assessed. Experimental results showed that Amberlyst 15 and H-FAU-30 were the best catalysts for isoamylene trimerization, with selectivities above 40% at 373 K. The most influencing physical properties of the catalysts on the selectivity toward dimers and trimers were acid capacity, acid strength, and specific surface area for resins, and microporous surface area for zeolites. Isoamylene trimerization extent was larger at higher temperature. The most probable mechanism of formation of these compounds involves the reaction between one molecule of dimer with one molecule of isoamylenes, although trimers could also be formed directly from three molecules of isoamylenes.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie901382p</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2010-04, Vol.49 (8), p.3561-3570
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie901382p
source ACS Publications
subjects Applied sciences
Chemical engineering
Exact sciences and technology
Ion exchange
Kinetics, Catalysis, and Reaction Engineering
title Isoamylene Trimerization in Liquid-Phase over Ion Exchange Resins and Zeolites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isoamylene%20Trimerization%20in%20Liquid-Phase%20over%20Ion%20Exchange%20Resins%20and%20Zeolites&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Granollers,%20Marta&rft.date=2010-04-21&rft.volume=49&rft.issue=8&rft.spage=3561&rft.epage=3570&rft.pages=3561-3570&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie901382p&rft_dat=%3Cacs_cross%3Ed161701580%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true