Stable Model Predictive Control for Integrating Systems with Optimizing Targets

This paper concerns the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces optimal targets for the system inputs and/or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2009-10, Vol.48 (20), p.9141-9150
Hauptverfasser: Alvarez, Luz A, Francischinelli, Erika M, Santoro, Bruno F, Odloak, Darci
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9150
container_issue 20
container_start_page 9141
container_title Industrial & engineering chemistry research
container_volume 48
creator Alvarez, Luz A
Francischinelli, Erika M
Santoro, Bruno F
Odloak, Darci
description This paper concerns the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces optimal targets for the system inputs and/or outputs that should be dynamically implemented by the MPC controller. This paper is based on a previous work (Comput. Chem. Eng. 2005, 29, 1089) where a nominally stable MPC was proposed for systems with the conventional control approach where only the outputs have set points. This work is also based on the work of Gonzalez et al. (J. Process Control 2009, 19, 110) where the zone control of stable systems is studied. The new controller is obtained by defining an extended control objective that includes input targets and zone control for the outputs. Additional decision variables are also defined to increase the set of feasible solutions to the control problem. The hard constraints resulting from the cancellation of the integrating modes at the end of the control horizon are softened, and the resulting control problem is made feasible to a large class of unknown disturbances and changes of the optimizing targets. The methods are illustrated with the simulated application of the proposed approaches to a distillation column of the oil refining industry.
doi_str_mv 10.1021/ie900400j
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie900400j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b129312404</sourcerecordid><originalsourceid>FETCH-LOGICAL-a326t-dbd650b71e188d2cd76e7b335ed2efad91d2f4e57fe811355160040c3e679b413</originalsourceid><addsrcrecordid>eNptkE1LAzEYhIMoWKsH_0EuHjysvvnaTY9S_ChUKrSel2zypqZsd0sSlfrrbanoxdPA8MzADCGXDG4YcHYbcAQgAVZHZMAUh0KBVMdkAFrrQmmtTslZSisAUErKAZnNs2lapM-9w5a-RHTB5vCBdNx3OfYt9X2kky7jMpocuiWdb1PGdaKfIb_R2SaHdfja-wsTl5jTOTnxpk148aND8vpwvxg_FdPZ42R8Ny2M4GUuXONKBU3FkGntuHVViVUjhELH0Rs3Yo57iaryqBkTSrFyP8sKLKtRI5kYkutDr419ShF9vYlhbeK2ZlDvn6h_n9ixVwd2Y5I1rY-msyH9BjiHUkAl_zhjU73q32O3W_BP3zfGomoT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stable Model Predictive Control for Integrating Systems with Optimizing Targets</title><source>ACS Publications</source><creator>Alvarez, Luz A ; Francischinelli, Erika M ; Santoro, Bruno F ; Odloak, Darci</creator><creatorcontrib>Alvarez, Luz A ; Francischinelli, Erika M ; Santoro, Bruno F ; Odloak, Darci</creatorcontrib><description>This paper concerns the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces optimal targets for the system inputs and/or outputs that should be dynamically implemented by the MPC controller. This paper is based on a previous work (Comput. Chem. Eng. 2005, 29, 1089) where a nominally stable MPC was proposed for systems with the conventional control approach where only the outputs have set points. This work is also based on the work of Gonzalez et al. (J. Process Control 2009, 19, 110) where the zone control of stable systems is studied. The new controller is obtained by defining an extended control objective that includes input targets and zone control for the outputs. Additional decision variables are also defined to increase the set of feasible solutions to the control problem. The hard constraints resulting from the cancellation of the integrating modes at the end of the control horizon are softened, and the resulting control problem is made feasible to a large class of unknown disturbances and changes of the optimizing targets. The methods are illustrated with the simulated application of the proposed approaches to a distillation column of the oil refining industry.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie900400j</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Process Design and Control</subject><ispartof>Industrial &amp; engineering chemistry research, 2009-10, Vol.48 (20), p.9141-9150</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a326t-dbd650b71e188d2cd76e7b335ed2efad91d2f4e57fe811355160040c3e679b413</citedby><cites>FETCH-LOGICAL-a326t-dbd650b71e188d2cd76e7b335ed2efad91d2f4e57fe811355160040c3e679b413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie900400j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie900400j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22063074$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alvarez, Luz A</creatorcontrib><creatorcontrib>Francischinelli, Erika M</creatorcontrib><creatorcontrib>Santoro, Bruno F</creatorcontrib><creatorcontrib>Odloak, Darci</creatorcontrib><title>Stable Model Predictive Control for Integrating Systems with Optimizing Targets</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>This paper concerns the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces optimal targets for the system inputs and/or outputs that should be dynamically implemented by the MPC controller. This paper is based on a previous work (Comput. Chem. Eng. 2005, 29, 1089) where a nominally stable MPC was proposed for systems with the conventional control approach where only the outputs have set points. This work is also based on the work of Gonzalez et al. (J. Process Control 2009, 19, 110) where the zone control of stable systems is studied. The new controller is obtained by defining an extended control objective that includes input targets and zone control for the outputs. Additional decision variables are also defined to increase the set of feasible solutions to the control problem. The hard constraints resulting from the cancellation of the integrating modes at the end of the control horizon are softened, and the resulting control problem is made feasible to a large class of unknown disturbances and changes of the optimizing targets. The methods are illustrated with the simulated application of the proposed approaches to a distillation column of the oil refining industry.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Process Design and Control</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEYhIMoWKsH_0EuHjysvvnaTY9S_ChUKrSel2zypqZsd0sSlfrrbanoxdPA8MzADCGXDG4YcHYbcAQgAVZHZMAUh0KBVMdkAFrrQmmtTslZSisAUErKAZnNs2lapM-9w5a-RHTB5vCBdNx3OfYt9X2kky7jMpocuiWdb1PGdaKfIb_R2SaHdfja-wsTl5jTOTnxpk148aND8vpwvxg_FdPZ42R8Ny2M4GUuXONKBU3FkGntuHVViVUjhELH0Rs3Yo57iaryqBkTSrFyP8sKLKtRI5kYkutDr419ShF9vYlhbeK2ZlDvn6h_n9ixVwd2Y5I1rY-msyH9BjiHUkAl_zhjU73q32O3W_BP3zfGomoT</recordid><startdate>20091021</startdate><enddate>20091021</enddate><creator>Alvarez, Luz A</creator><creator>Francischinelli, Erika M</creator><creator>Santoro, Bruno F</creator><creator>Odloak, Darci</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091021</creationdate><title>Stable Model Predictive Control for Integrating Systems with Optimizing Targets</title><author>Alvarez, Luz A ; Francischinelli, Erika M ; Santoro, Bruno F ; Odloak, Darci</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a326t-dbd650b71e188d2cd76e7b335ed2efad91d2f4e57fe811355160040c3e679b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Process Design and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez, Luz A</creatorcontrib><creatorcontrib>Francischinelli, Erika M</creatorcontrib><creatorcontrib>Santoro, Bruno F</creatorcontrib><creatorcontrib>Odloak, Darci</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez, Luz A</au><au>Francischinelli, Erika M</au><au>Santoro, Bruno F</au><au>Odloak, Darci</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Model Predictive Control for Integrating Systems with Optimizing Targets</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2009-10-21</date><risdate>2009</risdate><volume>48</volume><issue>20</issue><spage>9141</spage><epage>9150</epage><pages>9141-9150</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>This paper concerns the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces optimal targets for the system inputs and/or outputs that should be dynamically implemented by the MPC controller. This paper is based on a previous work (Comput. Chem. Eng. 2005, 29, 1089) where a nominally stable MPC was proposed for systems with the conventional control approach where only the outputs have set points. This work is also based on the work of Gonzalez et al. (J. Process Control 2009, 19, 110) where the zone control of stable systems is studied. The new controller is obtained by defining an extended control objective that includes input targets and zone control for the outputs. Additional decision variables are also defined to increase the set of feasible solutions to the control problem. The hard constraints resulting from the cancellation of the integrating modes at the end of the control horizon are softened, and the resulting control problem is made feasible to a large class of unknown disturbances and changes of the optimizing targets. The methods are illustrated with the simulated application of the proposed approaches to a distillation column of the oil refining industry.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie900400j</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2009-10, Vol.48 (20), p.9141-9150
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie900400j
source ACS Publications
subjects Applied sciences
Chemical engineering
Exact sciences and technology
Process Design and Control
title Stable Model Predictive Control for Integrating Systems with Optimizing Targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Model%20Predictive%20Control%20for%20Integrating%20Systems%20with%20Optimizing%20Targets&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Alvarez,%20Luz%20A&rft.date=2009-10-21&rft.volume=48&rft.issue=20&rft.spage=9141&rft.epage=9150&rft.pages=9141-9150&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie900400j&rft_dat=%3Cacs_cross%3Eb129312404%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true