Quantitative Structure−Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression

A quantitative structure−property relationship (QSPR) approach was used to develop a predictive model for viscosities of pure organic liquids using a set of 403 compounds that belong to diverse classes of organic chemicals. A pool of 116 descriptors that encode topostructural, topochemical, electrot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2009-11, Vol.48 (21), p.9708-9712
Hauptverfasser: Rajappan, Remya, Shingade, Prashant D, Natarajan, Ramanathan, Jayaraman, Valadi K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9712
container_issue 21
container_start_page 9708
container_title Industrial & engineering chemistry research
container_volume 48
creator Rajappan, Remya
Shingade, Prashant D
Natarajan, Ramanathan
Jayaraman, Valadi K
description A quantitative structure−property relationship (QSPR) approach was used to develop a predictive model for viscosities of pure organic liquids using a set of 403 compounds that belong to diverse classes of organic chemicals. A pool of 116 descriptors that encode topostructural, topochemical, electrotopological, geometrical, and quantum chemical properties of the organic compounds was used to develop QSPR models, based on the robust Random Forest (RF) regression algorithm. The performance of the algorithm, in terms of correlation coefficients and mean square errors, was determined to be good. The capability of the algorithm to build models and select the most-informative features simultaneously is very useful for several quantitative structure−activity/property relationship tasks. The eight most-dominant features selected by the RF regression algorithm primarily contained predictors that encode characteristics of atoms and groups that form hydrogen bonds, as well as factors involving molecular shape and size.
doi_str_mv 10.1021/ie8018406
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie8018406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b026209247</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-2c06e95c92dc4a876bb7e6ff35fe91b432b2f787fecf98bde0059b39383e9cee3</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0EEqWw4AbeINFFwHHi1FmiqgWkSv0DtpHjjIurNg62g9QbsIYbchJcFZUNq5HevPlG7yF0GZObmND4VgMnMU9JdoQ6MaMkYiRlx6hDOOcR45ydojPnVoQQxtK0g75mrai99sLrd8ALb1vpWwvfH59TaxqwfovnsA5bU7tX3eDr2WI67-GphUrLnYqNwmP91uoKv2gnjdNeg9up08DBE7sUtZZ4YDaNaevK4eGmWZutrpd4LurKbPDIWHA-vFmG6QLyHJ0osXZw8Tu76Hk0fBo8ROPJ_ePgbhwJynMfUUkyyJnMaSVTwftZWfYhUyphCvK4TBNaUtXnfQVS5bysIGTOyyRPeAK5BEi6qLfnSmucs6CKxuqNsNsiJsWuzeLQZvBe7b2NcFKslRW11O5wQGkoOMn4n09IV6xMa-uQ4B_eD28chQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative Structure−Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression</title><source>ACS Publications</source><creator>Rajappan, Remya ; Shingade, Prashant D ; Natarajan, Ramanathan ; Jayaraman, Valadi K</creator><creatorcontrib>Rajappan, Remya ; Shingade, Prashant D ; Natarajan, Ramanathan ; Jayaraman, Valadi K</creatorcontrib><description>A quantitative structure−property relationship (QSPR) approach was used to develop a predictive model for viscosities of pure organic liquids using a set of 403 compounds that belong to diverse classes of organic chemicals. A pool of 116 descriptors that encode topostructural, topochemical, electrotopological, geometrical, and quantum chemical properties of the organic compounds was used to develop QSPR models, based on the robust Random Forest (RF) regression algorithm. The performance of the algorithm, in terms of correlation coefficients and mean square errors, was determined to be good. The capability of the algorithm to build models and select the most-informative features simultaneously is very useful for several quantitative structure−activity/property relationship tasks. The eight most-dominant features selected by the RF regression algorithm primarily contained predictors that encode characteristics of atoms and groups that form hydrogen bonds, as well as factors involving molecular shape and size.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie8018406</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; General Research</subject><ispartof>Industrial &amp; engineering chemistry research, 2009-11, Vol.48 (21), p.9708-9712</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-2c06e95c92dc4a876bb7e6ff35fe91b432b2f787fecf98bde0059b39383e9cee3</citedby><cites>FETCH-LOGICAL-a289t-2c06e95c92dc4a876bb7e6ff35fe91b432b2f787fecf98bde0059b39383e9cee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie8018406$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie8018406$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22088368$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajappan, Remya</creatorcontrib><creatorcontrib>Shingade, Prashant D</creatorcontrib><creatorcontrib>Natarajan, Ramanathan</creatorcontrib><creatorcontrib>Jayaraman, Valadi K</creatorcontrib><title>Quantitative Structure−Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>A quantitative structure−property relationship (QSPR) approach was used to develop a predictive model for viscosities of pure organic liquids using a set of 403 compounds that belong to diverse classes of organic chemicals. A pool of 116 descriptors that encode topostructural, topochemical, electrotopological, geometrical, and quantum chemical properties of the organic compounds was used to develop QSPR models, based on the robust Random Forest (RF) regression algorithm. The performance of the algorithm, in terms of correlation coefficients and mean square errors, was determined to be good. The capability of the algorithm to build models and select the most-informative features simultaneously is very useful for several quantitative structure−activity/property relationship tasks. The eight most-dominant features selected by the RF regression algorithm primarily contained predictors that encode characteristics of atoms and groups that form hydrogen bonds, as well as factors involving molecular shape and size.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>General Research</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQhS0EEqWw4AbeINFFwHHi1FmiqgWkSv0DtpHjjIurNg62g9QbsIYbchJcFZUNq5HevPlG7yF0GZObmND4VgMnMU9JdoQ6MaMkYiRlx6hDOOcR45ydojPnVoQQxtK0g75mrai99sLrd8ALb1vpWwvfH59TaxqwfovnsA5bU7tX3eDr2WI67-GphUrLnYqNwmP91uoKv2gnjdNeg9up08DBE7sUtZZ4YDaNaevK4eGmWZutrpd4LurKbPDIWHA-vFmG6QLyHJ0osXZw8Tu76Hk0fBo8ROPJ_ePgbhwJynMfUUkyyJnMaSVTwftZWfYhUyphCvK4TBNaUtXnfQVS5bysIGTOyyRPeAK5BEi6qLfnSmucs6CKxuqNsNsiJsWuzeLQZvBe7b2NcFKslRW11O5wQGkoOMn4n09IV6xMa-uQ4B_eD28chQw</recordid><startdate>20091104</startdate><enddate>20091104</enddate><creator>Rajappan, Remya</creator><creator>Shingade, Prashant D</creator><creator>Natarajan, Ramanathan</creator><creator>Jayaraman, Valadi K</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091104</creationdate><title>Quantitative Structure−Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression</title><author>Rajappan, Remya ; Shingade, Prashant D ; Natarajan, Ramanathan ; Jayaraman, Valadi K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-2c06e95c92dc4a876bb7e6ff35fe91b432b2f787fecf98bde0059b39383e9cee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>General Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajappan, Remya</creatorcontrib><creatorcontrib>Shingade, Prashant D</creatorcontrib><creatorcontrib>Natarajan, Ramanathan</creatorcontrib><creatorcontrib>Jayaraman, Valadi K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajappan, Remya</au><au>Shingade, Prashant D</au><au>Natarajan, Ramanathan</au><au>Jayaraman, Valadi K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Structure−Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2009-11-04</date><risdate>2009</risdate><volume>48</volume><issue>21</issue><spage>9708</spage><epage>9712</epage><pages>9708-9712</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>A quantitative structure−property relationship (QSPR) approach was used to develop a predictive model for viscosities of pure organic liquids using a set of 403 compounds that belong to diverse classes of organic chemicals. A pool of 116 descriptors that encode topostructural, topochemical, electrotopological, geometrical, and quantum chemical properties of the organic compounds was used to develop QSPR models, based on the robust Random Forest (RF) regression algorithm. The performance of the algorithm, in terms of correlation coefficients and mean square errors, was determined to be good. The capability of the algorithm to build models and select the most-informative features simultaneously is very useful for several quantitative structure−activity/property relationship tasks. The eight most-dominant features selected by the RF regression algorithm primarily contained predictors that encode characteristics of atoms and groups that form hydrogen bonds, as well as factors involving molecular shape and size.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie8018406</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2009-11, Vol.48 (21), p.9708-9712
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie8018406
source ACS Publications
subjects Applied sciences
Chemical engineering
Exact sciences and technology
General Research
title Quantitative Structure−Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Structure%E2%88%92Property%20Relationship%20(QSPR)%20Prediction%20of%20Liquid%20Viscosities%20of%20Pure%20Organic%20Compounds%20Employing%20Random%20Forest%20Regression&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Rajappan,%20Remya&rft.date=2009-11-04&rft.volume=48&rft.issue=21&rft.spage=9708&rft.epage=9712&rft.pages=9708-9712&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie8018406&rft_dat=%3Cacs_cross%3Eb026209247%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true