Quantitative Structure−Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression
A quantitative structure−property relationship (QSPR) approach was used to develop a predictive model for viscosities of pure organic liquids using a set of 403 compounds that belong to diverse classes of organic chemicals. A pool of 116 descriptors that encode topostructural, topochemical, electrot...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2009-11, Vol.48 (21), p.9708-9712 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9712 |
---|---|
container_issue | 21 |
container_start_page | 9708 |
container_title | Industrial & engineering chemistry research |
container_volume | 48 |
creator | Rajappan, Remya Shingade, Prashant D Natarajan, Ramanathan Jayaraman, Valadi K |
description | A quantitative structure−property relationship (QSPR) approach was used to develop a predictive model for viscosities of pure organic liquids using a set of 403 compounds that belong to diverse classes of organic chemicals. A pool of 116 descriptors that encode topostructural, topochemical, electrotopological, geometrical, and quantum chemical properties of the organic compounds was used to develop QSPR models, based on the robust Random Forest (RF) regression algorithm. The performance of the algorithm, in terms of correlation coefficients and mean square errors, was determined to be good. The capability of the algorithm to build models and select the most-informative features simultaneously is very useful for several quantitative structure−activity/property relationship tasks. The eight most-dominant features selected by the RF regression algorithm primarily contained predictors that encode characteristics of atoms and groups that form hydrogen bonds, as well as factors involving molecular shape and size. |
doi_str_mv | 10.1021/ie8018406 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie8018406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b026209247</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-2c06e95c92dc4a876bb7e6ff35fe91b432b2f787fecf98bde0059b39383e9cee3</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0EEqWw4AbeINFFwHHi1FmiqgWkSv0DtpHjjIurNg62g9QbsIYbchJcFZUNq5HevPlG7yF0GZObmND4VgMnMU9JdoQ6MaMkYiRlx6hDOOcR45ydojPnVoQQxtK0g75mrai99sLrd8ALb1vpWwvfH59TaxqwfovnsA5bU7tX3eDr2WI67-GphUrLnYqNwmP91uoKv2gnjdNeg9up08DBE7sUtZZ4YDaNaevK4eGmWZutrpd4LurKbPDIWHA-vFmG6QLyHJ0osXZw8Tu76Hk0fBo8ROPJ_ePgbhwJynMfUUkyyJnMaSVTwftZWfYhUyphCvK4TBNaUtXnfQVS5bysIGTOyyRPeAK5BEi6qLfnSmucs6CKxuqNsNsiJsWuzeLQZvBe7b2NcFKslRW11O5wQGkoOMn4n09IV6xMa-uQ4B_eD28chQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative Structure−Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression</title><source>ACS Publications</source><creator>Rajappan, Remya ; Shingade, Prashant D ; Natarajan, Ramanathan ; Jayaraman, Valadi K</creator><creatorcontrib>Rajappan, Remya ; Shingade, Prashant D ; Natarajan, Ramanathan ; Jayaraman, Valadi K</creatorcontrib><description>A quantitative structure−property relationship (QSPR) approach was used to develop a predictive model for viscosities of pure organic liquids using a set of 403 compounds that belong to diverse classes of organic chemicals. A pool of 116 descriptors that encode topostructural, topochemical, electrotopological, geometrical, and quantum chemical properties of the organic compounds was used to develop QSPR models, based on the robust Random Forest (RF) regression algorithm. The performance of the algorithm, in terms of correlation coefficients and mean square errors, was determined to be good. The capability of the algorithm to build models and select the most-informative features simultaneously is very useful for several quantitative structure−activity/property relationship tasks. The eight most-dominant features selected by the RF regression algorithm primarily contained predictors that encode characteristics of atoms and groups that form hydrogen bonds, as well as factors involving molecular shape and size.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie8018406</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; General Research</subject><ispartof>Industrial & engineering chemistry research, 2009-11, Vol.48 (21), p.9708-9712</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-2c06e95c92dc4a876bb7e6ff35fe91b432b2f787fecf98bde0059b39383e9cee3</citedby><cites>FETCH-LOGICAL-a289t-2c06e95c92dc4a876bb7e6ff35fe91b432b2f787fecf98bde0059b39383e9cee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie8018406$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie8018406$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22088368$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajappan, Remya</creatorcontrib><creatorcontrib>Shingade, Prashant D</creatorcontrib><creatorcontrib>Natarajan, Ramanathan</creatorcontrib><creatorcontrib>Jayaraman, Valadi K</creatorcontrib><title>Quantitative Structure−Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>A quantitative structure−property relationship (QSPR) approach was used to develop a predictive model for viscosities of pure organic liquids using a set of 403 compounds that belong to diverse classes of organic chemicals. A pool of 116 descriptors that encode topostructural, topochemical, electrotopological, geometrical, and quantum chemical properties of the organic compounds was used to develop QSPR models, based on the robust Random Forest (RF) regression algorithm. The performance of the algorithm, in terms of correlation coefficients and mean square errors, was determined to be good. The capability of the algorithm to build models and select the most-informative features simultaneously is very useful for several quantitative structure−activity/property relationship tasks. The eight most-dominant features selected by the RF regression algorithm primarily contained predictors that encode characteristics of atoms and groups that form hydrogen bonds, as well as factors involving molecular shape and size.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>General Research</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQhS0EEqWw4AbeINFFwHHi1FmiqgWkSv0DtpHjjIurNg62g9QbsIYbchJcFZUNq5HevPlG7yF0GZObmND4VgMnMU9JdoQ6MaMkYiRlx6hDOOcR45ydojPnVoQQxtK0g75mrai99sLrd8ALb1vpWwvfH59TaxqwfovnsA5bU7tX3eDr2WI67-GphUrLnYqNwmP91uoKv2gnjdNeg9up08DBE7sUtZZ4YDaNaevK4eGmWZutrpd4LurKbPDIWHA-vFmG6QLyHJ0osXZw8Tu76Hk0fBo8ROPJ_ePgbhwJynMfUUkyyJnMaSVTwftZWfYhUyphCvK4TBNaUtXnfQVS5bysIGTOyyRPeAK5BEi6qLfnSmucs6CKxuqNsNsiJsWuzeLQZvBe7b2NcFKslRW11O5wQGkoOMn4n09IV6xMa-uQ4B_eD28chQw</recordid><startdate>20091104</startdate><enddate>20091104</enddate><creator>Rajappan, Remya</creator><creator>Shingade, Prashant D</creator><creator>Natarajan, Ramanathan</creator><creator>Jayaraman, Valadi K</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091104</creationdate><title>Quantitative Structure−Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression</title><author>Rajappan, Remya ; Shingade, Prashant D ; Natarajan, Ramanathan ; Jayaraman, Valadi K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-2c06e95c92dc4a876bb7e6ff35fe91b432b2f787fecf98bde0059b39383e9cee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>General Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajappan, Remya</creatorcontrib><creatorcontrib>Shingade, Prashant D</creatorcontrib><creatorcontrib>Natarajan, Ramanathan</creatorcontrib><creatorcontrib>Jayaraman, Valadi K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajappan, Remya</au><au>Shingade, Prashant D</au><au>Natarajan, Ramanathan</au><au>Jayaraman, Valadi K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Structure−Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2009-11-04</date><risdate>2009</risdate><volume>48</volume><issue>21</issue><spage>9708</spage><epage>9712</epage><pages>9708-9712</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>A quantitative structure−property relationship (QSPR) approach was used to develop a predictive model for viscosities of pure organic liquids using a set of 403 compounds that belong to diverse classes of organic chemicals. A pool of 116 descriptors that encode topostructural, topochemical, electrotopological, geometrical, and quantum chemical properties of the organic compounds was used to develop QSPR models, based on the robust Random Forest (RF) regression algorithm. The performance of the algorithm, in terms of correlation coefficients and mean square errors, was determined to be good. The capability of the algorithm to build models and select the most-informative features simultaneously is very useful for several quantitative structure−activity/property relationship tasks. The eight most-dominant features selected by the RF regression algorithm primarily contained predictors that encode characteristics of atoms and groups that form hydrogen bonds, as well as factors involving molecular shape and size.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie8018406</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2009-11, Vol.48 (21), p.9708-9712 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ie8018406 |
source | ACS Publications |
subjects | Applied sciences Chemical engineering Exact sciences and technology General Research |
title | Quantitative Structure−Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Structure%E2%88%92Property%20Relationship%20(QSPR)%20Prediction%20of%20Liquid%20Viscosities%20of%20Pure%20Organic%20Compounds%20Employing%20Random%20Forest%20Regression&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Rajappan,%20Remya&rft.date=2009-11-04&rft.volume=48&rft.issue=21&rft.spage=9708&rft.epage=9712&rft.pages=9708-9712&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie8018406&rft_dat=%3Cacs_cross%3Eb026209247%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |