A Barrier-Terrain Methodology for Global Optimization

It is shown that all stationary and singular points to optimization problems do not necessarily lie in the same valley and are not necessarily smoothly connected. Logarithmic barrier functions are shown to be an effective means of finding smooth connections between distinct valleys, so that the terr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2008-04, Vol.47 (8), p.2666-2680
Hauptverfasser: Lucia, Angelo, Gattupalli, Rajeswar R, Kulkarni, Kedar, Linninger, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2680
container_issue 8
container_start_page 2666
container_title Industrial & engineering chemistry research
container_volume 47
creator Lucia, Angelo
Gattupalli, Rajeswar R
Kulkarni, Kedar
Linninger, Andreas
description It is shown that all stationary and singular points to optimization problems do not necessarily lie in the same valley and are not necessarily smoothly connected. Logarithmic barrier functions are shown to be an effective means of finding smooth connections between distinct valleys, so that the terrain method is guaranteed to explore the entire feasible region. After valleys are connected, different stationary and singular points in separate parts of the feasible region can be calculated and identified and sequentially tracked as the barrier parameter is reduced. The proposed barrier-terrain methodology is used to successfully find all physically meaningful solutions to a small illustrative problem and a collocation model for a spherical catalyst pellet problem with 20 variables. The key contribution of this work is the discovery that barrier methods provide connections between valleys that contain stationary points for intermediate barrier parameter values under mild conditions on the model equations.
doi_str_mv 10.1021/ie071421t
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie071421t</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_C8NZ5Z0Z_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-324227acd3ce192fe95353f1e632f733ad6f15125dc7cfcfdf595f4c35665fbb3</originalsourceid><addsrcrecordid>eNptjz1PwzAURS0EEqUw8A-yMDAE_JEXO2OpaEEqFImydLFeHRtc0riyg0T59RQVlYXpDu-8e3UIOWf0ilHOrr2lkhWcdQekx4DTHGgBh6RHlVI5KAXH5CSlJaUUoCh6BAbZDcbobcxnNkb0bfZgu7dQhya8bjIXYjZuwgKbbLru_Mp_YedDe0qOHDbJnv1mn7yMbmfDu3wyHd8PB5McBZddLnjBuURTC2NZxZ2tQIBwzJaCOykE1qVjwDjURhpnXO2gAlcYAWUJbrEQfXK56zUxpBSt0-voVxg3mlH946v3vlv2YseuMRlsXMTW-LR_4JSXHFS15fId51NnP_d3jO-6lEKCnj0966F6nMOczrX460WT9DJ8xHZr_M_-N_yFb6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Barrier-Terrain Methodology for Global Optimization</title><source>ACS Publications</source><creator>Lucia, Angelo ; Gattupalli, Rajeswar R ; Kulkarni, Kedar ; Linninger, Andreas</creator><creatorcontrib>Lucia, Angelo ; Gattupalli, Rajeswar R ; Kulkarni, Kedar ; Linninger, Andreas</creatorcontrib><description>It is shown that all stationary and singular points to optimization problems do not necessarily lie in the same valley and are not necessarily smoothly connected. Logarithmic barrier functions are shown to be an effective means of finding smooth connections between distinct valleys, so that the terrain method is guaranteed to explore the entire feasible region. After valleys are connected, different stationary and singular points in separate parts of the feasible region can be calculated and identified and sequentially tracked as the barrier parameter is reduced. The proposed barrier-terrain methodology is used to successfully find all physically meaningful solutions to a small illustrative problem and a collocation model for a spherical catalyst pellet problem with 20 variables. The key contribution of this work is the discovery that barrier methods provide connections between valleys that contain stationary points for intermediate barrier parameter values under mild conditions on the model equations.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie071421t</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>Industrial &amp; engineering chemistry research, 2008-04, Vol.47 (8), p.2666-2680</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a327t-324227acd3ce192fe95353f1e632f733ad6f15125dc7cfcfdf595f4c35665fbb3</citedby><cites>FETCH-LOGICAL-a327t-324227acd3ce192fe95353f1e632f733ad6f15125dc7cfcfdf595f4c35665fbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie071421t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie071421t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20262589$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucia, Angelo</creatorcontrib><creatorcontrib>Gattupalli, Rajeswar R</creatorcontrib><creatorcontrib>Kulkarni, Kedar</creatorcontrib><creatorcontrib>Linninger, Andreas</creatorcontrib><title>A Barrier-Terrain Methodology for Global Optimization</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>It is shown that all stationary and singular points to optimization problems do not necessarily lie in the same valley and are not necessarily smoothly connected. Logarithmic barrier functions are shown to be an effective means of finding smooth connections between distinct valleys, so that the terrain method is guaranteed to explore the entire feasible region. After valleys are connected, different stationary and singular points in separate parts of the feasible region can be calculated and identified and sequentially tracked as the barrier parameter is reduced. The proposed barrier-terrain methodology is used to successfully find all physically meaningful solutions to a small illustrative problem and a collocation model for a spherical catalyst pellet problem with 20 variables. The key contribution of this work is the discovery that barrier methods provide connections between valleys that contain stationary points for intermediate barrier parameter values under mild conditions on the model equations.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptjz1PwzAURS0EEqUw8A-yMDAE_JEXO2OpaEEqFImydLFeHRtc0riyg0T59RQVlYXpDu-8e3UIOWf0ilHOrr2lkhWcdQekx4DTHGgBh6RHlVI5KAXH5CSlJaUUoCh6BAbZDcbobcxnNkb0bfZgu7dQhya8bjIXYjZuwgKbbLru_Mp_YedDe0qOHDbJnv1mn7yMbmfDu3wyHd8PB5McBZddLnjBuURTC2NZxZ2tQIBwzJaCOykE1qVjwDjURhpnXO2gAlcYAWUJbrEQfXK56zUxpBSt0-voVxg3mlH946v3vlv2YseuMRlsXMTW-LR_4JSXHFS15fId51NnP_d3jO-6lEKCnj0966F6nMOczrX460WT9DJ8xHZr_M_-N_yFb6w</recordid><startdate>20080416</startdate><enddate>20080416</enddate><creator>Lucia, Angelo</creator><creator>Gattupalli, Rajeswar R</creator><creator>Kulkarni, Kedar</creator><creator>Linninger, Andreas</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080416</creationdate><title>A Barrier-Terrain Methodology for Global Optimization</title><author>Lucia, Angelo ; Gattupalli, Rajeswar R ; Kulkarni, Kedar ; Linninger, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-324227acd3ce192fe95353f1e632f733ad6f15125dc7cfcfdf595f4c35665fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucia, Angelo</creatorcontrib><creatorcontrib>Gattupalli, Rajeswar R</creatorcontrib><creatorcontrib>Kulkarni, Kedar</creatorcontrib><creatorcontrib>Linninger, Andreas</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucia, Angelo</au><au>Gattupalli, Rajeswar R</au><au>Kulkarni, Kedar</au><au>Linninger, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Barrier-Terrain Methodology for Global Optimization</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2008-04-16</date><risdate>2008</risdate><volume>47</volume><issue>8</issue><spage>2666</spage><epage>2680</epage><pages>2666-2680</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>It is shown that all stationary and singular points to optimization problems do not necessarily lie in the same valley and are not necessarily smoothly connected. Logarithmic barrier functions are shown to be an effective means of finding smooth connections between distinct valleys, so that the terrain method is guaranteed to explore the entire feasible region. After valleys are connected, different stationary and singular points in separate parts of the feasible region can be calculated and identified and sequentially tracked as the barrier parameter is reduced. The proposed barrier-terrain methodology is used to successfully find all physically meaningful solutions to a small illustrative problem and a collocation model for a spherical catalyst pellet problem with 20 variables. The key contribution of this work is the discovery that barrier methods provide connections between valleys that contain stationary points for intermediate barrier parameter values under mild conditions on the model equations.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie071421t</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2008-04, Vol.47 (8), p.2666-2680
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie071421t
source ACS Publications
subjects Applied sciences
Chemical engineering
Exact sciences and technology
title A Barrier-Terrain Methodology for Global Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Barrier-Terrain%20Methodology%20for%20Global%20Optimization&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Lucia,%20Angelo&rft.date=2008-04-16&rft.volume=47&rft.issue=8&rft.spage=2666&rft.epage=2680&rft.pages=2666-2680&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie071421t&rft_dat=%3Cistex_cross%3Eark_67375_TPS_C8NZ5Z0Z_3%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true