Application of Membrane Residue Curve Maps to Batch and Continuous Processes

Membrane residue curve maps (M-RCMs) [Peters et al. Ind. Eng. Chem. Res. 2006. 45, 9080] plot the change, over time, of the retentate composition in a batch still. In this paper, the relevance of M-RCMs to both batch and continuous processes is investigated. A constant relative permeability model is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2008-04, Vol.47 (7), p.2361-2376
Hauptverfasser: Peters, Mark, Kauchali, Shehzaad, Hildebrandt, Diane, Glasser, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2376
container_issue 7
container_start_page 2361
container_title Industrial & engineering chemistry research
container_volume 47
creator Peters, Mark
Kauchali, Shehzaad
Hildebrandt, Diane
Glasser, David
description Membrane residue curve maps (M-RCMs) [Peters et al. Ind. Eng. Chem. Res. 2006. 45, 9080] plot the change, over time, of the retentate composition in a batch still. In this paper, the relevance of M-RCMs to both batch and continuous processes is investigated. A constant relative permeability model is used for demonstration purposes, and the theory is then extended to a real system of methanol/butene/methyl tertiary butyl ether (MTBE). It has been shown that the differential material balances over a continuously operated membrane unit are mathematically equivalent to those which describe the M-RCM. The time variable in the batch setup is analogous to the spatial variable in continuous units. The retentate composition in a nonreflux continuous unit, for example, will follow the residue curve that passes through the initial feed composition. The M-RCM, in conjunction with the necessary flux equations, allows a designer to determine permeation area (or time) required in a continuous (or batch) process. Membrane columns operating at total and infinite reflux are discussed. A novel approach in synthesizing and designing hybrid distillation−membrane processes emerges:  using the M-RCM in conjunction with column profile maps (CPMs) allows one to graphically interpret hybrids in an efficient manner. The method generates the attainable region (AR) for a chosen configuration and informs the designer of parameters like membrane area and number of distillation stages required.
doi_str_mv 10.1021/ie071155j
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie071155j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_749CT5JR_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-35d5525a4530372352836be8142a28e7187473b4d908a4a70362be9fb837ed203</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqUw8A-8MDAE_HWxO0LEp1JRlTJbl8QRLm0S2QmCf0-rorIw3XDPPaf3JeScsyvOBL_2jmnOAZYHZMRBsASYgkMyYsaYBIyBY3IS45IxBqDUiOQ3XbfyJfa-bWhb06lbFwEbR-cu-mpwNBvCp6NT7CLtW3qLfflOsalo1ja9b4Z2iHQW2tLF6OIpOapxFd3Z7xyTt_u7RfaY5C8PT9lNnqBMVZ9IqAAEoALJpBYShJFp4QxXAoVxmhuttCxUNWEGFWomU1G4SV0YqV0lmByTy523DG2MwdW2C36N4dtyZrc12H0NG_Zix3YYS1zVm3Clj_sDwYRIld46kx3nY---9nsMHzbVUoNdzF6tVpNsAc9zm_95sYx22Q6h2ST-5_8PZLx10A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Membrane Residue Curve Maps to Batch and Continuous Processes</title><source>ACS Journals</source><creator>Peters, Mark ; Kauchali, Shehzaad ; Hildebrandt, Diane ; Glasser, David</creator><creatorcontrib>Peters, Mark ; Kauchali, Shehzaad ; Hildebrandt, Diane ; Glasser, David</creatorcontrib><description>Membrane residue curve maps (M-RCMs) [Peters et al. Ind. Eng. Chem. Res. 2006. 45, 9080] plot the change, over time, of the retentate composition in a batch still. In this paper, the relevance of M-RCMs to both batch and continuous processes is investigated. A constant relative permeability model is used for demonstration purposes, and the theory is then extended to a real system of methanol/butene/methyl tertiary butyl ether (MTBE). It has been shown that the differential material balances over a continuously operated membrane unit are mathematically equivalent to those which describe the M-RCM. The time variable in the batch setup is analogous to the spatial variable in continuous units. The retentate composition in a nonreflux continuous unit, for example, will follow the residue curve that passes through the initial feed composition. The M-RCM, in conjunction with the necessary flux equations, allows a designer to determine permeation area (or time) required in a continuous (or batch) process. Membrane columns operating at total and infinite reflux are discussed. A novel approach in synthesizing and designing hybrid distillation−membrane processes emerges:  using the M-RCM in conjunction with column profile maps (CPMs) allows one to graphically interpret hybrids in an efficient manner. The method generates the attainable region (AR) for a chosen configuration and informs the designer of parameters like membrane area and number of distillation stages required.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie071155j</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>Industrial &amp; engineering chemistry research, 2008-04, Vol.47 (7), p.2361-2376</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-35d5525a4530372352836be8142a28e7187473b4d908a4a70362be9fb837ed203</citedby><cites>FETCH-LOGICAL-a364t-35d5525a4530372352836be8142a28e7187473b4d908a4a70362be9fb837ed203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie071155j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie071155j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20226470$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, Mark</creatorcontrib><creatorcontrib>Kauchali, Shehzaad</creatorcontrib><creatorcontrib>Hildebrandt, Diane</creatorcontrib><creatorcontrib>Glasser, David</creatorcontrib><title>Application of Membrane Residue Curve Maps to Batch and Continuous Processes</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Membrane residue curve maps (M-RCMs) [Peters et al. Ind. Eng. Chem. Res. 2006. 45, 9080] plot the change, over time, of the retentate composition in a batch still. In this paper, the relevance of M-RCMs to both batch and continuous processes is investigated. A constant relative permeability model is used for demonstration purposes, and the theory is then extended to a real system of methanol/butene/methyl tertiary butyl ether (MTBE). It has been shown that the differential material balances over a continuously operated membrane unit are mathematically equivalent to those which describe the M-RCM. The time variable in the batch setup is analogous to the spatial variable in continuous units. The retentate composition in a nonreflux continuous unit, for example, will follow the residue curve that passes through the initial feed composition. The M-RCM, in conjunction with the necessary flux equations, allows a designer to determine permeation area (or time) required in a continuous (or batch) process. Membrane columns operating at total and infinite reflux are discussed. A novel approach in synthesizing and designing hybrid distillation−membrane processes emerges:  using the M-RCM in conjunction with column profile maps (CPMs) allows one to graphically interpret hybrids in an efficient manner. The method generates the attainable region (AR) for a chosen configuration and informs the designer of parameters like membrane area and number of distillation stages required.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EEqUw8A-8MDAE_HWxO0LEp1JRlTJbl8QRLm0S2QmCf0-rorIw3XDPPaf3JeScsyvOBL_2jmnOAZYHZMRBsASYgkMyYsaYBIyBY3IS45IxBqDUiOQ3XbfyJfa-bWhb06lbFwEbR-cu-mpwNBvCp6NT7CLtW3qLfflOsalo1ja9b4Z2iHQW2tLF6OIpOapxFd3Z7xyTt_u7RfaY5C8PT9lNnqBMVZ9IqAAEoALJpBYShJFp4QxXAoVxmhuttCxUNWEGFWomU1G4SV0YqV0lmByTy523DG2MwdW2C36N4dtyZrc12H0NG_Zix3YYS1zVm3Clj_sDwYRIld46kx3nY---9nsMHzbVUoNdzF6tVpNsAc9zm_95sYx22Q6h2ST-5_8PZLx10A</recordid><startdate>20080402</startdate><enddate>20080402</enddate><creator>Peters, Mark</creator><creator>Kauchali, Shehzaad</creator><creator>Hildebrandt, Diane</creator><creator>Glasser, David</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080402</creationdate><title>Application of Membrane Residue Curve Maps to Batch and Continuous Processes</title><author>Peters, Mark ; Kauchali, Shehzaad ; Hildebrandt, Diane ; Glasser, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-35d5525a4530372352836be8142a28e7187473b4d908a4a70362be9fb837ed203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Mark</creatorcontrib><creatorcontrib>Kauchali, Shehzaad</creatorcontrib><creatorcontrib>Hildebrandt, Diane</creatorcontrib><creatorcontrib>Glasser, David</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Mark</au><au>Kauchali, Shehzaad</au><au>Hildebrandt, Diane</au><au>Glasser, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Membrane Residue Curve Maps to Batch and Continuous Processes</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2008-04-02</date><risdate>2008</risdate><volume>47</volume><issue>7</issue><spage>2361</spage><epage>2376</epage><pages>2361-2376</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Membrane residue curve maps (M-RCMs) [Peters et al. Ind. Eng. Chem. Res. 2006. 45, 9080] plot the change, over time, of the retentate composition in a batch still. In this paper, the relevance of M-RCMs to both batch and continuous processes is investigated. A constant relative permeability model is used for demonstration purposes, and the theory is then extended to a real system of methanol/butene/methyl tertiary butyl ether (MTBE). It has been shown that the differential material balances over a continuously operated membrane unit are mathematically equivalent to those which describe the M-RCM. The time variable in the batch setup is analogous to the spatial variable in continuous units. The retentate composition in a nonreflux continuous unit, for example, will follow the residue curve that passes through the initial feed composition. The M-RCM, in conjunction with the necessary flux equations, allows a designer to determine permeation area (or time) required in a continuous (or batch) process. Membrane columns operating at total and infinite reflux are discussed. A novel approach in synthesizing and designing hybrid distillation−membrane processes emerges:  using the M-RCM in conjunction with column profile maps (CPMs) allows one to graphically interpret hybrids in an efficient manner. The method generates the attainable region (AR) for a chosen configuration and informs the designer of parameters like membrane area and number of distillation stages required.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie071155j</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2008-04, Vol.47 (7), p.2361-2376
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie071155j
source ACS Journals
subjects Applied sciences
Chemical engineering
Exact sciences and technology
title Application of Membrane Residue Curve Maps to Batch and Continuous Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Membrane%20Residue%20Curve%20Maps%20to%20Batch%20and%20Continuous%20Processes&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Peters,%20Mark&rft.date=2008-04-02&rft.volume=47&rft.issue=7&rft.spage=2361&rft.epage=2376&rft.pages=2361-2376&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie071155j&rft_dat=%3Cistex_cross%3Eark_67375_TPS_749CT5JR_L%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true