Hydrogen Production by Catalytic Steam Reforming of Acetol, a Model Compound of Bio-Oil

Hydrogen can be produced by catalytic steam reforming of bio-oil or its fractions. Bio-oil is a complex mixture of a large number of compounds derived from fast pyrolysis of biomass. Acetol has been selected as a model compound. Steam reforming of acetol has been studied in a fluidized bed reactor u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2007-04, Vol.46 (8), p.2399-2406
Hauptverfasser: Ramos, M. Carmen, Navascués, Ana I, García, Lucía, Bilbao, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2406
container_issue 8
container_start_page 2399
container_title Industrial & engineering chemistry research
container_volume 46
creator Ramos, M. Carmen
Navascués, Ana I
García, Lucía
Bilbao, Rafael
description Hydrogen can be produced by catalytic steam reforming of bio-oil or its fractions. Bio-oil is a complex mixture of a large number of compounds derived from fast pyrolysis of biomass. Acetol has been selected as a model compound. Steam reforming of acetol has been studied in a fluidized bed reactor using coprecipitated Ni−Al catalysts, some promoted with lanthanum and cobalt. Noncatalytic experiments have been performed from 450 to 650 °C. Catalytic experiments have been carried out at 600 and 650 °C in order to analyze the influence of the catalyst weight/acetol flow rate (W/m Ac) ratio on gas yields. The influence of the steam to carbon molar (S/C) ratio and the catalyst composition on gas yields has also been studied. The presence of the catalyst increases H2, CO2, and total gas yields while CH4, CO, and C2 yields decrease. An increase in the S/C ratio at 650 °C increases H2, CO2, and total gas yields and carbon conversion to gas. The presence of lanthanum in Ni−Al coprecipitated catalysts increases CH4, CO2, C2, and total gas yields as well as carbon conversion to gas. Ni−Co−Al catalysts present the lowest values of carbon conversion to gas. Hydrogen yields obtained with the catalysts tested follow this sequence:  Ni−Al = Ni−Co−Al (Co/Ni = 0.25) > Ni−Co−Al (Co/Ni = 0.025) > Ni−Al−La (4 wt % La2O3) > Ni−Al−La (8 wt % La2O3) > Ni−Al−La (12 wt % La2O3).
doi_str_mv 10.1021/ie060904e
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie060904e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d099648245</sourcerecordid><originalsourceid>FETCH-LOGICAL-a430t-489d3d799fb5d232e518e6c14a7c24826637dcafa621b44f2b57c5b1f57de3783</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKsL_0E2LgRHk0xes6zFF7a22IrgJmTykNTppCRTsP_eSkU3rs7ifPdczgHgFKNLjAi-Cg5xVCHq9kAPM4IKhijbBz0kpSyYlOwQHOW8QAgxRmkPvN5vbIrvroXTFO3adCG2sN7Aoe50s-mCgbPO6SV8dj6mZWjfYfRwYFwXmwuo4Tha18BhXK7iurXf3nWIxSQ0x-DA6ya7kx_tg5fbm_nwvhhN7h6Gg1GhaYm6gsrKllZUla-ZJSVxDEvHDaZaGEIl4bwU1mivOcE1pZ7UTBhWY8-EdaWQZR-c73JNijkn59UqhaVOG4WR-l5E_S6yZc927EpnoxufdGtC_juQXBKBqy1X7LiQO_f56-v0obgoBVPz6UxN-Rzzt8exevrL1SarRVyndtv4n_9f4Ul6nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrogen Production by Catalytic Steam Reforming of Acetol, a Model Compound of Bio-Oil</title><source>American Chemical Society Journals</source><creator>Ramos, M. Carmen ; Navascués, Ana I ; García, Lucía ; Bilbao, Rafael</creator><creatorcontrib>Ramos, M. Carmen ; Navascués, Ana I ; García, Lucía ; Bilbao, Rafael</creatorcontrib><description>Hydrogen can be produced by catalytic steam reforming of bio-oil or its fractions. Bio-oil is a complex mixture of a large number of compounds derived from fast pyrolysis of biomass. Acetol has been selected as a model compound. Steam reforming of acetol has been studied in a fluidized bed reactor using coprecipitated Ni−Al catalysts, some promoted with lanthanum and cobalt. Noncatalytic experiments have been performed from 450 to 650 °C. Catalytic experiments have been carried out at 600 and 650 °C in order to analyze the influence of the catalyst weight/acetol flow rate (W/m Ac) ratio on gas yields. The influence of the steam to carbon molar (S/C) ratio and the catalyst composition on gas yields has also been studied. The presence of the catalyst increases H2, CO2, and total gas yields while CH4, CO, and C2 yields decrease. An increase in the S/C ratio at 650 °C increases H2, CO2, and total gas yields and carbon conversion to gas. The presence of lanthanum in Ni−Al coprecipitated catalysts increases CH4, CO2, C2, and total gas yields as well as carbon conversion to gas. Ni−Co−Al catalysts present the lowest values of carbon conversion to gas. Hydrogen yields obtained with the catalysts tested follow this sequence:  Ni−Al = Ni−Co−Al (Co/Ni = 0.25) &gt; Ni−Co−Al (Co/Ni = 0.025) &gt; Ni−Al−La (4 wt % La2O3) &gt; Ni−Al−La (8 wt % La2O3) &gt; Ni−Al−La (12 wt % La2O3).</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie060904e</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Catalysis ; Catalytic reactions ; Chemical engineering ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Reactors ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Industrial &amp; engineering chemistry research, 2007-04, Vol.46 (8), p.2399-2406</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a430t-489d3d799fb5d232e518e6c14a7c24826637dcafa621b44f2b57c5b1f57de3783</citedby><cites>FETCH-LOGICAL-a430t-489d3d799fb5d232e518e6c14a7c24826637dcafa621b44f2b57c5b1f57de3783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie060904e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie060904e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18682719$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramos, M. Carmen</creatorcontrib><creatorcontrib>Navascués, Ana I</creatorcontrib><creatorcontrib>García, Lucía</creatorcontrib><creatorcontrib>Bilbao, Rafael</creatorcontrib><title>Hydrogen Production by Catalytic Steam Reforming of Acetol, a Model Compound of Bio-Oil</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Hydrogen can be produced by catalytic steam reforming of bio-oil or its fractions. Bio-oil is a complex mixture of a large number of compounds derived from fast pyrolysis of biomass. Acetol has been selected as a model compound. Steam reforming of acetol has been studied in a fluidized bed reactor using coprecipitated Ni−Al catalysts, some promoted with lanthanum and cobalt. Noncatalytic experiments have been performed from 450 to 650 °C. Catalytic experiments have been carried out at 600 and 650 °C in order to analyze the influence of the catalyst weight/acetol flow rate (W/m Ac) ratio on gas yields. The influence of the steam to carbon molar (S/C) ratio and the catalyst composition on gas yields has also been studied. The presence of the catalyst increases H2, CO2, and total gas yields while CH4, CO, and C2 yields decrease. An increase in the S/C ratio at 650 °C increases H2, CO2, and total gas yields and carbon conversion to gas. The presence of lanthanum in Ni−Al coprecipitated catalysts increases CH4, CO2, C2, and total gas yields as well as carbon conversion to gas. Ni−Co−Al catalysts present the lowest values of carbon conversion to gas. Hydrogen yields obtained with the catalysts tested follow this sequence:  Ni−Al = Ni−Co−Al (Co/Ni = 0.25) &gt; Ni−Co−Al (Co/Ni = 0.025) &gt; Ni−Al−La (4 wt % La2O3) &gt; Ni−Al−La (8 wt % La2O3) &gt; Ni−Al−La (12 wt % La2O3).</description><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Reactors</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMoWKsL_0E2LgRHk0xes6zFF7a22IrgJmTykNTppCRTsP_eSkU3rs7ifPdczgHgFKNLjAi-Cg5xVCHq9kAPM4IKhijbBz0kpSyYlOwQHOW8QAgxRmkPvN5vbIrvroXTFO3adCG2sN7Aoe50s-mCgbPO6SV8dj6mZWjfYfRwYFwXmwuo4Tha18BhXK7iurXf3nWIxSQ0x-DA6ya7kx_tg5fbm_nwvhhN7h6Gg1GhaYm6gsrKllZUla-ZJSVxDEvHDaZaGEIl4bwU1mivOcE1pZ7UTBhWY8-EdaWQZR-c73JNijkn59UqhaVOG4WR-l5E_S6yZc927EpnoxufdGtC_juQXBKBqy1X7LiQO_f56-v0obgoBVPz6UxN-Rzzt8exevrL1SarRVyndtv4n_9f4Ul6nA</recordid><startdate>20070411</startdate><enddate>20070411</enddate><creator>Ramos, M. Carmen</creator><creator>Navascués, Ana I</creator><creator>García, Lucía</creator><creator>Bilbao, Rafael</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070411</creationdate><title>Hydrogen Production by Catalytic Steam Reforming of Acetol, a Model Compound of Bio-Oil</title><author>Ramos, M. Carmen ; Navascués, Ana I ; García, Lucía ; Bilbao, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a430t-489d3d799fb5d232e518e6c14a7c24826637dcafa621b44f2b57c5b1f57de3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Reactors</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, M. Carmen</creatorcontrib><creatorcontrib>Navascués, Ana I</creatorcontrib><creatorcontrib>García, Lucía</creatorcontrib><creatorcontrib>Bilbao, Rafael</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, M. Carmen</au><au>Navascués, Ana I</au><au>García, Lucía</au><au>Bilbao, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Production by Catalytic Steam Reforming of Acetol, a Model Compound of Bio-Oil</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2007-04-11</date><risdate>2007</risdate><volume>46</volume><issue>8</issue><spage>2399</spage><epage>2406</epage><pages>2399-2406</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Hydrogen can be produced by catalytic steam reforming of bio-oil or its fractions. Bio-oil is a complex mixture of a large number of compounds derived from fast pyrolysis of biomass. Acetol has been selected as a model compound. Steam reforming of acetol has been studied in a fluidized bed reactor using coprecipitated Ni−Al catalysts, some promoted with lanthanum and cobalt. Noncatalytic experiments have been performed from 450 to 650 °C. Catalytic experiments have been carried out at 600 and 650 °C in order to analyze the influence of the catalyst weight/acetol flow rate (W/m Ac) ratio on gas yields. The influence of the steam to carbon molar (S/C) ratio and the catalyst composition on gas yields has also been studied. The presence of the catalyst increases H2, CO2, and total gas yields while CH4, CO, and C2 yields decrease. An increase in the S/C ratio at 650 °C increases H2, CO2, and total gas yields and carbon conversion to gas. The presence of lanthanum in Ni−Al coprecipitated catalysts increases CH4, CO2, C2, and total gas yields as well as carbon conversion to gas. Ni−Co−Al catalysts present the lowest values of carbon conversion to gas. Hydrogen yields obtained with the catalysts tested follow this sequence:  Ni−Al = Ni−Co−Al (Co/Ni = 0.25) &gt; Ni−Co−Al (Co/Ni = 0.025) &gt; Ni−Al−La (4 wt % La2O3) &gt; Ni−Al−La (8 wt % La2O3) &gt; Ni−Al−La (12 wt % La2O3).</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie060904e</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2007-04, Vol.46 (8), p.2399-2406
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie060904e
source American Chemical Society Journals
subjects Applied sciences
Catalysis
Catalytic reactions
Chemical engineering
Chemistry
Exact sciences and technology
General and physical chemistry
Reactors
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Hydrogen Production by Catalytic Steam Reforming of Acetol, a Model Compound of Bio-Oil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Production%20by%20Catalytic%20Steam%20Reforming%20of%20Acetol,%20a%20Model%20Compound%20of%20Bio-Oil&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Ramos,%20M.%20Carmen&rft.date=2007-04-11&rft.volume=46&rft.issue=8&rft.spage=2399&rft.epage=2406&rft.pages=2399-2406&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie060904e&rft_dat=%3Cacs_cross%3Ed099648245%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true