Heat and Power Integration of Methane Reforming Based Hydrogen Production

Heat and power integration studies are carried out for a conventional methane reforming based hydrogen production plant by formulating and solving the minimum hot/cold/electric utility cost problem for the associated heat exchange network. The formulation of the problem allows for the optimal integr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2005-11, Vol.44 (24), p.9113-9119
Hauptverfasser: Posada, Alberto, Manousiouthakis, Vasilios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9119
container_issue 24
container_start_page 9113
container_title Industrial & engineering chemistry research
container_volume 44
creator Posada, Alberto
Manousiouthakis, Vasilios
description Heat and power integration studies are carried out for a conventional methane reforming based hydrogen production plant by formulating and solving the minimum hot/cold/electric utility cost problem for the associated heat exchange network. The formulation of the problem allows for the optimal integration of heat exchangers, heat engines, and heat pumps, and its solution shows a utility profit due to electricity production in excess of process needs. Heat integration alone (pinch analysis) results in a 36% reduction in utility costs with respect to a conventional (albeit nonoptimized) process.
doi_str_mv 10.1021/ie049041k
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie049041k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c617184414</sourcerecordid><originalsourceid>FETCH-LOGICAL-a430t-2dfeccae07e1a4efbc247b66699bdbe198f00dc34ff8d3e2555b6300bf3f9c6d3</originalsourceid><addsrcrecordid>eNptkEtPAjEUhRujiYgu_AfduHAxejtt57FUfIBCJIq6bDrtLQ6PGdIOUf69EAxsXN3F-c45uYeQcwZXDGJ2XSKIHASbHpAWkzFEEoQ8JC3IsiySWSaPyUkIEwCQUogW6XVRN1RXlg7rb_S0VzU49rop64rWjg6w-dIV0ld0tZ-X1Zje6oCWdlfW12Os6NDXdmk2-Ck5cnoW8Ozvtsn7w_2o0436L4-9zk0_0oJDE8XWoTEaIUWmBbrCxCItkiTJ88IWyPLMAVjDhXOZ5RhLKYuEAxSOu9wklrfJ5TbX-DoEj04tfDnXfqUYqM0GarfBmr3YsgsdjJ45rytThr0h5cB5ztZctOXK0ODPTtd-qpKUp1KNhm_q6fNjcCefuervc7UJalIvfbX--J_-XzE0d70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat and Power Integration of Methane Reforming Based Hydrogen Production</title><source>ACS Publications</source><creator>Posada, Alberto ; Manousiouthakis, Vasilios</creator><creatorcontrib>Posada, Alberto ; Manousiouthakis, Vasilios</creatorcontrib><description>Heat and power integration studies are carried out for a conventional methane reforming based hydrogen production plant by formulating and solving the minimum hot/cold/electric utility cost problem for the associated heat exchange network. The formulation of the problem allows for the optimal integration of heat exchangers, heat engines, and heat pumps, and its solution shows a utility profit due to electricity production in excess of process needs. Heat integration alone (pinch analysis) results in a 36% reduction in utility costs with respect to a conventional (albeit nonoptimized) process.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie049041k</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>Industrial &amp; engineering chemistry research, 2005-11, Vol.44 (24), p.9113-9119</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a430t-2dfeccae07e1a4efbc247b66699bdbe198f00dc34ff8d3e2555b6300bf3f9c6d3</citedby><cites>FETCH-LOGICAL-a430t-2dfeccae07e1a4efbc247b66699bdbe198f00dc34ff8d3e2555b6300bf3f9c6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie049041k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie049041k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17303391$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Posada, Alberto</creatorcontrib><creatorcontrib>Manousiouthakis, Vasilios</creatorcontrib><title>Heat and Power Integration of Methane Reforming Based Hydrogen Production</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Heat and power integration studies are carried out for a conventional methane reforming based hydrogen production plant by formulating and solving the minimum hot/cold/electric utility cost problem for the associated heat exchange network. The formulation of the problem allows for the optimal integration of heat exchangers, heat engines, and heat pumps, and its solution shows a utility profit due to electricity production in excess of process needs. Heat integration alone (pinch analysis) results in a 36% reduction in utility costs with respect to a conventional (albeit nonoptimized) process.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkEtPAjEUhRujiYgu_AfduHAxejtt57FUfIBCJIq6bDrtLQ6PGdIOUf69EAxsXN3F-c45uYeQcwZXDGJ2XSKIHASbHpAWkzFEEoQ8JC3IsiySWSaPyUkIEwCQUogW6XVRN1RXlg7rb_S0VzU49rop64rWjg6w-dIV0ld0tZ-X1Zje6oCWdlfW12Os6NDXdmk2-Ck5cnoW8Ozvtsn7w_2o0436L4-9zk0_0oJDE8XWoTEaIUWmBbrCxCItkiTJ88IWyPLMAVjDhXOZ5RhLKYuEAxSOu9wklrfJ5TbX-DoEj04tfDnXfqUYqM0GarfBmr3YsgsdjJ45rytThr0h5cB5ztZctOXK0ODPTtd-qpKUp1KNhm_q6fNjcCefuervc7UJalIvfbX--J_-XzE0d70</recordid><startdate>20051123</startdate><enddate>20051123</enddate><creator>Posada, Alberto</creator><creator>Manousiouthakis, Vasilios</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051123</creationdate><title>Heat and Power Integration of Methane Reforming Based Hydrogen Production</title><author>Posada, Alberto ; Manousiouthakis, Vasilios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a430t-2dfeccae07e1a4efbc247b66699bdbe198f00dc34ff8d3e2555b6300bf3f9c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Posada, Alberto</creatorcontrib><creatorcontrib>Manousiouthakis, Vasilios</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Posada, Alberto</au><au>Manousiouthakis, Vasilios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat and Power Integration of Methane Reforming Based Hydrogen Production</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2005-11-23</date><risdate>2005</risdate><volume>44</volume><issue>24</issue><spage>9113</spage><epage>9119</epage><pages>9113-9119</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Heat and power integration studies are carried out for a conventional methane reforming based hydrogen production plant by formulating and solving the minimum hot/cold/electric utility cost problem for the associated heat exchange network. The formulation of the problem allows for the optimal integration of heat exchangers, heat engines, and heat pumps, and its solution shows a utility profit due to electricity production in excess of process needs. Heat integration alone (pinch analysis) results in a 36% reduction in utility costs with respect to a conventional (albeit nonoptimized) process.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie049041k</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2005-11, Vol.44 (24), p.9113-9119
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie049041k
source ACS Publications
subjects Applied sciences
Chemical engineering
Exact sciences and technology
title Heat and Power Integration of Methane Reforming Based Hydrogen Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20and%20Power%20Integration%20of%20Methane%20Reforming%20Based%20Hydrogen%20Production&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Posada,%20Alberto&rft.date=2005-11-23&rft.volume=44&rft.issue=24&rft.spage=9113&rft.epage=9119&rft.pages=9113-9119&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie049041k&rft_dat=%3Cacs_cross%3Ec617184414%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true