Volterra−Laguerre Models for Nonlinear Process Identification with Application to a Fluid Catalytic Cracking Unit

Volterra series models are attractive for use in model-based control of nonlinear processes because they are direct extensions of linear impulse response models commonly used in process control. However, a limitation in their use is the fact that higher than second-order nonlinearities and/or multi-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2004-01, Vol.43 (2), p.340-348
Hauptverfasser: Zheng, Qingsheng, Zafiriou, Evanghelos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 2
container_start_page 340
container_title Industrial & engineering chemistry research
container_volume 43
creator Zheng, Qingsheng
Zafiriou, Evanghelos
description Volterra series models are attractive for use in model-based control of nonlinear processes because they are direct extensions of linear impulse response models commonly used in process control. However, a limitation in their use is the fact that higher than second-order nonlinearities and/or multi-input multi-output Volterra models involve very large numbers of parameters. Here we address the problem with a parameter reduction method that utilizes a Laguerre basis function expansion of the Volterra kernels and orthogonal regression analysis for the determination of the dominating terms in the model. The conditions under which a nonlinear system can be approximated by a Volterra−Laguerre model are investigated. The technique is then applied to the identification of a 3 × 3 third-order nonlinear model for a simulated model IV fluid catalytic cracking unit.
doi_str_mv 10.1021/ie021064g
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie021064g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b168213469</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-be4faad3ed4fb07878077ce04cbb70a79585f5264981610a461c9789eec8831a3</originalsourceid><addsrcrecordid>eNptkMlOwzAQhi0EEmU58Aa-cOAQsBtvPUJEWRQgEsvVmjpOcRviynYFvAFnHpEnIagsFy4zo5lv_tH8CO1RckjJkB4520ci2HQNDSgfkowTxtfRgCilMq4U30RbMc4IIZwzNkDxwbfJhgAfb-8lTJd9afGVr20bceMDvvZd6zoLAVfBGxsjvqhtl1zjDCTnO_zs0iM-Xizan0byGPC4XboaF5CgfU3O4CKAmbtuiu87l3bQRgNttLvfeRvdj0_vivOsvDm7KI7LDHIxTNnEsgagzm3NmgmRSioipbGEmclEEpAjrnjDh4KNFBWUABPUjKQaWWuUyink2-hgpWuCjzHYRi-Ce4LwqinRX27pX7d6dn_FLiAaaJsAnXHxb4EzIgQVPZetOBeTffmdQ5hrIXPJ9V11q6uirER5QvXlny6YqGd-Gbr-43_ufwKPsYcj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Volterra−Laguerre Models for Nonlinear Process Identification with Application to a Fluid Catalytic Cracking Unit</title><source>ACS Publications</source><creator>Zheng, Qingsheng ; Zafiriou, Evanghelos</creator><creatorcontrib>Zheng, Qingsheng ; Zafiriou, Evanghelos</creatorcontrib><description>Volterra series models are attractive for use in model-based control of nonlinear processes because they are direct extensions of linear impulse response models commonly used in process control. However, a limitation in their use is the fact that higher than second-order nonlinearities and/or multi-input multi-output Volterra models involve very large numbers of parameters. Here we address the problem with a parameter reduction method that utilizes a Laguerre basis function expansion of the Volterra kernels and orthogonal regression analysis for the determination of the dominating terms in the model. The conditions under which a nonlinear system can be approximated by a Volterra−Laguerre model are investigated. The technique is then applied to the identification of a 3 × 3 third-order nonlinear model for a simulated model IV fluid catalytic cracking unit.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie021064g</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization ; Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>Industrial &amp; engineering chemistry research, 2004-01, Vol.43 (2), p.340-348</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-be4faad3ed4fb07878077ce04cbb70a79585f5264981610a461c9789eec8831a3</citedby><cites>FETCH-LOGICAL-a362t-be4faad3ed4fb07878077ce04cbb70a79585f5264981610a461c9789eec8831a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie021064g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie021064g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15406616$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Qingsheng</creatorcontrib><creatorcontrib>Zafiriou, Evanghelos</creatorcontrib><title>Volterra−Laguerre Models for Nonlinear Process Identification with Application to a Fluid Catalytic Cracking Unit</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Volterra series models are attractive for use in model-based control of nonlinear processes because they are direct extensions of linear impulse response models commonly used in process control. However, a limitation in their use is the fact that higher than second-order nonlinearities and/or multi-input multi-output Volterra models involve very large numbers of parameters. Here we address the problem with a parameter reduction method that utilizes a Laguerre basis function expansion of the Volterra kernels and orthogonal regression analysis for the determination of the dominating terms in the model. The conditions under which a nonlinear system can be approximated by a Volterra−Laguerre model are investigated. The technique is then applied to the identification of a 3 × 3 third-order nonlinear model for a simulated model IV fluid catalytic cracking unit.</description><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptkMlOwzAQhi0EEmU58Aa-cOAQsBtvPUJEWRQgEsvVmjpOcRviynYFvAFnHpEnIagsFy4zo5lv_tH8CO1RckjJkB4520ci2HQNDSgfkowTxtfRgCilMq4U30RbMc4IIZwzNkDxwbfJhgAfb-8lTJd9afGVr20bceMDvvZd6zoLAVfBGxsjvqhtl1zjDCTnO_zs0iM-Xizan0byGPC4XboaF5CgfU3O4CKAmbtuiu87l3bQRgNttLvfeRvdj0_vivOsvDm7KI7LDHIxTNnEsgagzm3NmgmRSioipbGEmclEEpAjrnjDh4KNFBWUABPUjKQaWWuUyink2-hgpWuCjzHYRi-Ce4LwqinRX27pX7d6dn_FLiAaaJsAnXHxb4EzIgQVPZetOBeTffmdQ5hrIXPJ9V11q6uirER5QvXlny6YqGd-Gbr-43_ufwKPsYcj</recordid><startdate>20040121</startdate><enddate>20040121</enddate><creator>Zheng, Qingsheng</creator><creator>Zafiriou, Evanghelos</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040121</creationdate><title>Volterra−Laguerre Models for Nonlinear Process Identification with Application to a Fluid Catalytic Cracking Unit</title><author>Zheng, Qingsheng ; Zafiriou, Evanghelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-be4faad3ed4fb07878077ce04cbb70a79585f5264981610a461c9789eec8831a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Qingsheng</creatorcontrib><creatorcontrib>Zafiriou, Evanghelos</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Qingsheng</au><au>Zafiriou, Evanghelos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volterra−Laguerre Models for Nonlinear Process Identification with Application to a Fluid Catalytic Cracking Unit</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2004-01-21</date><risdate>2004</risdate><volume>43</volume><issue>2</issue><spage>340</spage><epage>348</epage><pages>340-348</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Volterra series models are attractive for use in model-based control of nonlinear processes because they are direct extensions of linear impulse response models commonly used in process control. However, a limitation in their use is the fact that higher than second-order nonlinearities and/or multi-input multi-output Volterra models involve very large numbers of parameters. Here we address the problem with a parameter reduction method that utilizes a Laguerre basis function expansion of the Volterra kernels and orthogonal regression analysis for the determination of the dominating terms in the model. The conditions under which a nonlinear system can be approximated by a Volterra−Laguerre model are investigated. The technique is then applied to the identification of a 3 × 3 third-order nonlinear model for a simulated model IV fluid catalytic cracking unit.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie021064g</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2004-01, Vol.43 (2), p.340-348
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie021064g
source ACS Publications
subjects Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization
Applied sciences
Chemical engineering
Exact sciences and technology
title Volterra−Laguerre Models for Nonlinear Process Identification with Application to a Fluid Catalytic Cracking Unit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volterra%E2%88%92Laguerre%20Models%20for%20Nonlinear%20Process%20Identification%20with%20Application%20to%20a%20Fluid%20Catalytic%20Cracking%20Unit&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Zheng,%20Qingsheng&rft.date=2004-01-21&rft.volume=43&rft.issue=2&rft.spage=340&rft.epage=348&rft.pages=340-348&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie021064g&rft_dat=%3Cacs_cross%3Eb168213469%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true