Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes
We present the development of both steady-state and dynamic models for a slurry HDPE process using fundamental chemical engineering principles and advanced software tools, Polymers Plus and Aspen Dynamics. The discussion includes thermodynamic properties, phase equilibrium, reaction kinetics, polyme...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2002-11, Vol.41 (23), p.5601-5618 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5618 |
---|---|
container_issue | 23 |
container_start_page | 5601 |
container_title | Industrial & engineering chemistry research |
container_volume | 41 |
creator | Khare, Neeraj P Seavey, Kevin C Liu, Y. A Ramanathan, Sundaram Lingard, Simon Chen, Chau-Chyun |
description | We present the development of both steady-state and dynamic models for a slurry HDPE process using fundamental chemical engineering principles and advanced software tools, Polymers Plus and Aspen Dynamics. The discussion includes thermodynamic properties, phase equilibrium, reaction kinetics, polymer properties, and other modeling issues. We characterize a Ziegler−Natta catalyst by assuming the existence of multiple catalyst site types and deconvoluting data from gel permeation chromatography to determine the most probable chain-length distributions and relative amounts of polymer produced at each site type. We validate the model using plant data from two large-scale commercial slurry HDPE processes. Significantly, the model contains a single set of kinetic and thermodynamic parameters that accurately predicts the polymer production rate, molecular weight, polydispersity index, and composition for several product grades. We illustrate the utility of the dynamic model by simulating a grade change. Finally, we propose a process retrofit that permits an increase in the HDPE production rate of up to 20% while maintaining the product quality. |
doi_str_mv | 10.1021/ie020451n |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie020451n</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c906742151</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-151c577292f2b89e43c3b60f5e10da6727b9ba2d4f55482514bf32485768e9c43</originalsourceid><addsrcrecordid>eNptkM1OwzAQhC0EEqVw4A18QaKHgO3YiXNE_aFIRUSkSNwsx9m0LmlS2alE3p6govbCabXab2dnB6FbSh4oYfTRAmGEC1qfoQEVjASi787RgEgpAyGluERX3m8IIUJwPkA6a0EXXZC1ugWs6wJPulpvrcGvTQGVrVe4KfG42W7BGasrnFV75zo8t6t1MIHa27bDaVN10K67CmrA9_NJOh3h1DUGvAd_jS5KXXm4-atD9DGbLsfzYPH2_DJ-WgSaM9kGVFAj4pglrGS5TICHJswjUgqgpNBRzOI8yTUreNkbl0xQnpch41LEkYTE8HCIRgdd4xrvHZRq5-xWu05Ron6zUcdsevbuwO60N7oqna6N9acFTno7jPZccOCsb-H7ONfuS0VxGAu1TDMVsuw9jmZEfZ50tfFq0-xd3X_8z_0fK-p9fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes</title><source>ACS Publications</source><creator>Khare, Neeraj P ; Seavey, Kevin C ; Liu, Y. A ; Ramanathan, Sundaram ; Lingard, Simon ; Chen, Chau-Chyun</creator><creatorcontrib>Khare, Neeraj P ; Seavey, Kevin C ; Liu, Y. A ; Ramanathan, Sundaram ; Lingard, Simon ; Chen, Chau-Chyun</creatorcontrib><description>We present the development of both steady-state and dynamic models for a slurry HDPE process using fundamental chemical engineering principles and advanced software tools, Polymers Plus and Aspen Dynamics. The discussion includes thermodynamic properties, phase equilibrium, reaction kinetics, polymer properties, and other modeling issues. We characterize a Ziegler−Natta catalyst by assuming the existence of multiple catalyst site types and deconvoluting data from gel permeation chromatography to determine the most probable chain-length distributions and relative amounts of polymer produced at each site type. We validate the model using plant data from two large-scale commercial slurry HDPE processes. Significantly, the model contains a single set of kinetic and thermodynamic parameters that accurately predicts the polymer production rate, molecular weight, polydispersity index, and composition for several product grades. We illustrate the utility of the dynamic model by simulating a grade change. Finally, we propose a process retrofit that permits an increase in the HDPE production rate of up to 20% while maintaining the product quality.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie020451n</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Industrial polymers. Preparations ; Polymer industry, paints, wood ; Technology of polymers ; Thermoplastics</subject><ispartof>Industrial & engineering chemistry research, 2002-11, Vol.41 (23), p.5601-5618</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-151c577292f2b89e43c3b60f5e10da6727b9ba2d4f55482514bf32485768e9c43</citedby><cites>FETCH-LOGICAL-a428t-151c577292f2b89e43c3b60f5e10da6727b9ba2d4f55482514bf32485768e9c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie020451n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie020451n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14015121$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khare, Neeraj P</creatorcontrib><creatorcontrib>Seavey, Kevin C</creatorcontrib><creatorcontrib>Liu, Y. A</creatorcontrib><creatorcontrib>Ramanathan, Sundaram</creatorcontrib><creatorcontrib>Lingard, Simon</creatorcontrib><creatorcontrib>Chen, Chau-Chyun</creatorcontrib><title>Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>We present the development of both steady-state and dynamic models for a slurry HDPE process using fundamental chemical engineering principles and advanced software tools, Polymers Plus and Aspen Dynamics. The discussion includes thermodynamic properties, phase equilibrium, reaction kinetics, polymer properties, and other modeling issues. We characterize a Ziegler−Natta catalyst by assuming the existence of multiple catalyst site types and deconvoluting data from gel permeation chromatography to determine the most probable chain-length distributions and relative amounts of polymer produced at each site type. We validate the model using plant data from two large-scale commercial slurry HDPE processes. Significantly, the model contains a single set of kinetic and thermodynamic parameters that accurately predicts the polymer production rate, molecular weight, polydispersity index, and composition for several product grades. We illustrate the utility of the dynamic model by simulating a grade change. Finally, we propose a process retrofit that permits an increase in the HDPE production rate of up to 20% while maintaining the product quality.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Industrial polymers. Preparations</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><subject>Thermoplastics</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkM1OwzAQhC0EEqVw4A18QaKHgO3YiXNE_aFIRUSkSNwsx9m0LmlS2alE3p6govbCabXab2dnB6FbSh4oYfTRAmGEC1qfoQEVjASi787RgEgpAyGluERX3m8IIUJwPkA6a0EXXZC1ugWs6wJPulpvrcGvTQGVrVe4KfG42W7BGasrnFV75zo8t6t1MIHa27bDaVN10K67CmrA9_NJOh3h1DUGvAd_jS5KXXm4-atD9DGbLsfzYPH2_DJ-WgSaM9kGVFAj4pglrGS5TICHJswjUgqgpNBRzOI8yTUreNkbl0xQnpch41LEkYTE8HCIRgdd4xrvHZRq5-xWu05Ron6zUcdsevbuwO60N7oqna6N9acFTno7jPZccOCsb-H7ONfuS0VxGAu1TDMVsuw9jmZEfZ50tfFq0-xd3X_8z_0fK-p9fQ</recordid><startdate>20021113</startdate><enddate>20021113</enddate><creator>Khare, Neeraj P</creator><creator>Seavey, Kevin C</creator><creator>Liu, Y. A</creator><creator>Ramanathan, Sundaram</creator><creator>Lingard, Simon</creator><creator>Chen, Chau-Chyun</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20021113</creationdate><title>Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes</title><author>Khare, Neeraj P ; Seavey, Kevin C ; Liu, Y. A ; Ramanathan, Sundaram ; Lingard, Simon ; Chen, Chau-Chyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-151c577292f2b89e43c3b60f5e10da6727b9ba2d4f55482514bf32485768e9c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Industrial polymers. Preparations</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><topic>Thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khare, Neeraj P</creatorcontrib><creatorcontrib>Seavey, Kevin C</creatorcontrib><creatorcontrib>Liu, Y. A</creatorcontrib><creatorcontrib>Ramanathan, Sundaram</creatorcontrib><creatorcontrib>Lingard, Simon</creatorcontrib><creatorcontrib>Chen, Chau-Chyun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khare, Neeraj P</au><au>Seavey, Kevin C</au><au>Liu, Y. A</au><au>Ramanathan, Sundaram</au><au>Lingard, Simon</au><au>Chen, Chau-Chyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2002-11-13</date><risdate>2002</risdate><volume>41</volume><issue>23</issue><spage>5601</spage><epage>5618</epage><pages>5601-5618</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>We present the development of both steady-state and dynamic models for a slurry HDPE process using fundamental chemical engineering principles and advanced software tools, Polymers Plus and Aspen Dynamics. The discussion includes thermodynamic properties, phase equilibrium, reaction kinetics, polymer properties, and other modeling issues. We characterize a Ziegler−Natta catalyst by assuming the existence of multiple catalyst site types and deconvoluting data from gel permeation chromatography to determine the most probable chain-length distributions and relative amounts of polymer produced at each site type. We validate the model using plant data from two large-scale commercial slurry HDPE processes. Significantly, the model contains a single set of kinetic and thermodynamic parameters that accurately predicts the polymer production rate, molecular weight, polydispersity index, and composition for several product grades. We illustrate the utility of the dynamic model by simulating a grade change. Finally, we propose a process retrofit that permits an increase in the HDPE production rate of up to 20% while maintaining the product quality.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie020451n</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2002-11, Vol.41 (23), p.5601-5618 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ie020451n |
source | ACS Publications |
subjects | Applied sciences Exact sciences and technology Industrial polymers. Preparations Polymer industry, paints, wood Technology of polymers Thermoplastics |
title | Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady-State%20and%20Dynamic%20Modeling%20of%20Commercial%20Slurry%20High-Density%20Polyethylene%20(HDPE)%20Processes&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Khare,%20Neeraj%20P&rft.date=2002-11-13&rft.volume=41&rft.issue=23&rft.spage=5601&rft.epage=5618&rft.pages=5601-5618&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie020451n&rft_dat=%3Cacs_cross%3Ec906742151%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |