Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes

We present the development of both steady-state and dynamic models for a slurry HDPE process using fundamental chemical engineering principles and advanced software tools, Polymers Plus and Aspen Dynamics. The discussion includes thermodynamic properties, phase equilibrium, reaction kinetics, polyme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2002-11, Vol.41 (23), p.5601-5618
Hauptverfasser: Khare, Neeraj P, Seavey, Kevin C, Liu, Y. A, Ramanathan, Sundaram, Lingard, Simon, Chen, Chau-Chyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5618
container_issue 23
container_start_page 5601
container_title Industrial & engineering chemistry research
container_volume 41
creator Khare, Neeraj P
Seavey, Kevin C
Liu, Y. A
Ramanathan, Sundaram
Lingard, Simon
Chen, Chau-Chyun
description We present the development of both steady-state and dynamic models for a slurry HDPE process using fundamental chemical engineering principles and advanced software tools, Polymers Plus and Aspen Dynamics. The discussion includes thermodynamic properties, phase equilibrium, reaction kinetics, polymer properties, and other modeling issues. We characterize a Ziegler−Natta catalyst by assuming the existence of multiple catalyst site types and deconvoluting data from gel permeation chromatography to determine the most probable chain-length distributions and relative amounts of polymer produced at each site type. We validate the model using plant data from two large-scale commercial slurry HDPE processes. Significantly, the model contains a single set of kinetic and thermodynamic parameters that accurately predicts the polymer production rate, molecular weight, polydispersity index, and composition for several product grades. We illustrate the utility of the dynamic model by simulating a grade change. Finally, we propose a process retrofit that permits an increase in the HDPE production rate of up to 20% while maintaining the product quality.
doi_str_mv 10.1021/ie020451n
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie020451n</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c906742151</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-151c577292f2b89e43c3b60f5e10da6727b9ba2d4f55482514bf32485768e9c43</originalsourceid><addsrcrecordid>eNptkM1OwzAQhC0EEqVw4A18QaKHgO3YiXNE_aFIRUSkSNwsx9m0LmlS2alE3p6govbCabXab2dnB6FbSh4oYfTRAmGEC1qfoQEVjASi787RgEgpAyGluERX3m8IIUJwPkA6a0EXXZC1ugWs6wJPulpvrcGvTQGVrVe4KfG42W7BGasrnFV75zo8t6t1MIHa27bDaVN10K67CmrA9_NJOh3h1DUGvAd_jS5KXXm4-atD9DGbLsfzYPH2_DJ-WgSaM9kGVFAj4pglrGS5TICHJswjUgqgpNBRzOI8yTUreNkbl0xQnpch41LEkYTE8HCIRgdd4xrvHZRq5-xWu05Ron6zUcdsevbuwO60N7oqna6N9acFTno7jPZccOCsb-H7ONfuS0VxGAu1TDMVsuw9jmZEfZ50tfFq0-xd3X_8z_0fK-p9fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes</title><source>ACS Publications</source><creator>Khare, Neeraj P ; Seavey, Kevin C ; Liu, Y. A ; Ramanathan, Sundaram ; Lingard, Simon ; Chen, Chau-Chyun</creator><creatorcontrib>Khare, Neeraj P ; Seavey, Kevin C ; Liu, Y. A ; Ramanathan, Sundaram ; Lingard, Simon ; Chen, Chau-Chyun</creatorcontrib><description>We present the development of both steady-state and dynamic models for a slurry HDPE process using fundamental chemical engineering principles and advanced software tools, Polymers Plus and Aspen Dynamics. The discussion includes thermodynamic properties, phase equilibrium, reaction kinetics, polymer properties, and other modeling issues. We characterize a Ziegler−Natta catalyst by assuming the existence of multiple catalyst site types and deconvoluting data from gel permeation chromatography to determine the most probable chain-length distributions and relative amounts of polymer produced at each site type. We validate the model using plant data from two large-scale commercial slurry HDPE processes. Significantly, the model contains a single set of kinetic and thermodynamic parameters that accurately predicts the polymer production rate, molecular weight, polydispersity index, and composition for several product grades. We illustrate the utility of the dynamic model by simulating a grade change. Finally, we propose a process retrofit that permits an increase in the HDPE production rate of up to 20% while maintaining the product quality.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie020451n</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Industrial polymers. Preparations ; Polymer industry, paints, wood ; Technology of polymers ; Thermoplastics</subject><ispartof>Industrial &amp; engineering chemistry research, 2002-11, Vol.41 (23), p.5601-5618</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-151c577292f2b89e43c3b60f5e10da6727b9ba2d4f55482514bf32485768e9c43</citedby><cites>FETCH-LOGICAL-a428t-151c577292f2b89e43c3b60f5e10da6727b9ba2d4f55482514bf32485768e9c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie020451n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie020451n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14015121$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khare, Neeraj P</creatorcontrib><creatorcontrib>Seavey, Kevin C</creatorcontrib><creatorcontrib>Liu, Y. A</creatorcontrib><creatorcontrib>Ramanathan, Sundaram</creatorcontrib><creatorcontrib>Lingard, Simon</creatorcontrib><creatorcontrib>Chen, Chau-Chyun</creatorcontrib><title>Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>We present the development of both steady-state and dynamic models for a slurry HDPE process using fundamental chemical engineering principles and advanced software tools, Polymers Plus and Aspen Dynamics. The discussion includes thermodynamic properties, phase equilibrium, reaction kinetics, polymer properties, and other modeling issues. We characterize a Ziegler−Natta catalyst by assuming the existence of multiple catalyst site types and deconvoluting data from gel permeation chromatography to determine the most probable chain-length distributions and relative amounts of polymer produced at each site type. We validate the model using plant data from two large-scale commercial slurry HDPE processes. Significantly, the model contains a single set of kinetic and thermodynamic parameters that accurately predicts the polymer production rate, molecular weight, polydispersity index, and composition for several product grades. We illustrate the utility of the dynamic model by simulating a grade change. Finally, we propose a process retrofit that permits an increase in the HDPE production rate of up to 20% while maintaining the product quality.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Industrial polymers. Preparations</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><subject>Thermoplastics</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkM1OwzAQhC0EEqVw4A18QaKHgO3YiXNE_aFIRUSkSNwsx9m0LmlS2alE3p6govbCabXab2dnB6FbSh4oYfTRAmGEC1qfoQEVjASi787RgEgpAyGluERX3m8IIUJwPkA6a0EXXZC1ugWs6wJPulpvrcGvTQGVrVe4KfG42W7BGasrnFV75zo8t6t1MIHa27bDaVN10K67CmrA9_NJOh3h1DUGvAd_jS5KXXm4-atD9DGbLsfzYPH2_DJ-WgSaM9kGVFAj4pglrGS5TICHJswjUgqgpNBRzOI8yTUreNkbl0xQnpch41LEkYTE8HCIRgdd4xrvHZRq5-xWu05Ron6zUcdsevbuwO60N7oqna6N9acFTno7jPZccOCsb-H7ONfuS0VxGAu1TDMVsuw9jmZEfZ50tfFq0-xd3X_8z_0fK-p9fQ</recordid><startdate>20021113</startdate><enddate>20021113</enddate><creator>Khare, Neeraj P</creator><creator>Seavey, Kevin C</creator><creator>Liu, Y. A</creator><creator>Ramanathan, Sundaram</creator><creator>Lingard, Simon</creator><creator>Chen, Chau-Chyun</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20021113</creationdate><title>Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes</title><author>Khare, Neeraj P ; Seavey, Kevin C ; Liu, Y. A ; Ramanathan, Sundaram ; Lingard, Simon ; Chen, Chau-Chyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-151c577292f2b89e43c3b60f5e10da6727b9ba2d4f55482514bf32485768e9c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Industrial polymers. Preparations</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><topic>Thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khare, Neeraj P</creatorcontrib><creatorcontrib>Seavey, Kevin C</creatorcontrib><creatorcontrib>Liu, Y. A</creatorcontrib><creatorcontrib>Ramanathan, Sundaram</creatorcontrib><creatorcontrib>Lingard, Simon</creatorcontrib><creatorcontrib>Chen, Chau-Chyun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khare, Neeraj P</au><au>Seavey, Kevin C</au><au>Liu, Y. A</au><au>Ramanathan, Sundaram</au><au>Lingard, Simon</au><au>Chen, Chau-Chyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2002-11-13</date><risdate>2002</risdate><volume>41</volume><issue>23</issue><spage>5601</spage><epage>5618</epage><pages>5601-5618</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>We present the development of both steady-state and dynamic models for a slurry HDPE process using fundamental chemical engineering principles and advanced software tools, Polymers Plus and Aspen Dynamics. The discussion includes thermodynamic properties, phase equilibrium, reaction kinetics, polymer properties, and other modeling issues. We characterize a Ziegler−Natta catalyst by assuming the existence of multiple catalyst site types and deconvoluting data from gel permeation chromatography to determine the most probable chain-length distributions and relative amounts of polymer produced at each site type. We validate the model using plant data from two large-scale commercial slurry HDPE processes. Significantly, the model contains a single set of kinetic and thermodynamic parameters that accurately predicts the polymer production rate, molecular weight, polydispersity index, and composition for several product grades. We illustrate the utility of the dynamic model by simulating a grade change. Finally, we propose a process retrofit that permits an increase in the HDPE production rate of up to 20% while maintaining the product quality.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie020451n</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2002-11, Vol.41 (23), p.5601-5618
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie020451n
source ACS Publications
subjects Applied sciences
Exact sciences and technology
Industrial polymers. Preparations
Polymer industry, paints, wood
Technology of polymers
Thermoplastics
title Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady-State%20and%20Dynamic%20Modeling%20of%20Commercial%20Slurry%20High-Density%20Polyethylene%20(HDPE)%20Processes&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Khare,%20Neeraj%20P&rft.date=2002-11-13&rft.volume=41&rft.issue=23&rft.spage=5601&rft.epage=5618&rft.pages=5601-5618&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie020451n&rft_dat=%3Cacs_cross%3Ec906742151%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true