Pilot- and Industrial-Scale Experimental Investigation of Numerically Optimized Cyclones

A new geometry of reverse-flow gas cyclones obtained by numerical optimization was shown at the laboratory scale to be significantly more efficient than other high-efficiency designs. However, it is usually recognized that experimental results obtained with laboratory-scale or sampling cyclones cann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2003-01, Vol.42 (1), p.145-154
Hauptverfasser: Salcedo, Romualdo L, Pinho, Mário J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 145
container_title Industrial & engineering chemistry research
container_volume 42
creator Salcedo, Romualdo L
Pinho, Mário J
description A new geometry of reverse-flow gas cyclones obtained by numerical optimization was shown at the laboratory scale to be significantly more efficient than other high-efficiency designs. However, it is usually recognized that experimental results obtained with laboratory-scale or sampling cyclones cannot be extrapolated to pilot or industrial scales. The present paper confirms, at these larger scales, the significantly larger collection efficiencies obtained with the numerically optimized design compared to a competing high-efficiency design available on the marketplace for the capture of fine sulfanilic acid (median volume diameter of 17 μm) at a Portuguese chemical manufacturer. A partial recirculation system within a collector-first arrangement further reduces emissions without an appreciable increase in pressure drop. The experimentally verified efficiencies at the industrial scale varied between 99.58 and 99.64% for sulfanilic acid with pressure drops around 2.5 kPa. The numerically optimized cyclones, when coupled with a partial recirculation system, extend the applicability of these simple devices to the fine particle collection that is typical of more expensive devices, such as venturis and online pulse jet bag filters.
doi_str_mv 10.1021/ie020195e
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie020195e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h31977182</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-5bb456b2371f1bf1d411594f94d9a751f8b784d1962062aa0db50b634af5cce33</originalsourceid><addsrcrecordid>eNptkD9PwzAQxS0EEqUw8A2yMDAEbMeXOCOK-FNR0YoW1M1yEhu5pElku6jl02NU1C5MN7zfvXv3ELok-IZgSm6NwhSTHNQRGhCgOAbM4BgNMOc8Bs7hFJ05t8QYAzA2QIupaTofR7Kto1Fbr523RjbxrJKNiu43vbJmpVovm6B-KefNh_Sma6NORy_rVVAD2GyjSe_NynyrOiq2VdO1yp2jEy0bpy7-5hC9PdzPi6d4PHkcFXfjWCYp9TGUJYO0pElGNCk1qRkhkDOdszqXGRDNy4yzmuQpxSmVEtcl4DJNmNRQVSpJhuh651vZzjmrtOhDZGm3gmDxW4nYVxLYqx3bSxdyayvbyrjDAmMp4YQGLt5xxnm12evSfoo0SzIQ8-lMwOIV3ufFs5gdfGXlxLJb2zZ8_M_9HzHAfJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pilot- and Industrial-Scale Experimental Investigation of Numerically Optimized Cyclones</title><source>ACS Publications</source><creator>Salcedo, Romualdo L ; Pinho, Mário J</creator><creatorcontrib>Salcedo, Romualdo L ; Pinho, Mário J</creatorcontrib><description>A new geometry of reverse-flow gas cyclones obtained by numerical optimization was shown at the laboratory scale to be significantly more efficient than other high-efficiency designs. However, it is usually recognized that experimental results obtained with laboratory-scale or sampling cyclones cannot be extrapolated to pilot or industrial scales. The present paper confirms, at these larger scales, the significantly larger collection efficiencies obtained with the numerically optimized design compared to a competing high-efficiency design available on the marketplace for the capture of fine sulfanilic acid (median volume diameter of 17 μm) at a Portuguese chemical manufacturer. A partial recirculation system within a collector-first arrangement further reduces emissions without an appreciable increase in pressure drop. The experimentally verified efficiencies at the industrial scale varied between 99.58 and 99.64% for sulfanilic acid with pressure drops around 2.5 kPa. The numerically optimized cyclones, when coupled with a partial recirculation system, extend the applicability of these simple devices to the fine particle collection that is typical of more expensive devices, such as venturis and online pulse jet bag filters.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie020195e</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Centrifugation, cyclones ; Chemical engineering ; Exact sciences and technology ; Liquid-liquid and fluid-solid mechanical separations</subject><ispartof>Industrial &amp; engineering chemistry research, 2003-01, Vol.42 (1), p.145-154</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-5bb456b2371f1bf1d411594f94d9a751f8b784d1962062aa0db50b634af5cce33</citedby><cites>FETCH-LOGICAL-a362t-5bb456b2371f1bf1d411594f94d9a751f8b784d1962062aa0db50b634af5cce33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie020195e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie020195e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14461812$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Salcedo, Romualdo L</creatorcontrib><creatorcontrib>Pinho, Mário J</creatorcontrib><title>Pilot- and Industrial-Scale Experimental Investigation of Numerically Optimized Cyclones</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>A new geometry of reverse-flow gas cyclones obtained by numerical optimization was shown at the laboratory scale to be significantly more efficient than other high-efficiency designs. However, it is usually recognized that experimental results obtained with laboratory-scale or sampling cyclones cannot be extrapolated to pilot or industrial scales. The present paper confirms, at these larger scales, the significantly larger collection efficiencies obtained with the numerically optimized design compared to a competing high-efficiency design available on the marketplace for the capture of fine sulfanilic acid (median volume diameter of 17 μm) at a Portuguese chemical manufacturer. A partial recirculation system within a collector-first arrangement further reduces emissions without an appreciable increase in pressure drop. The experimentally verified efficiencies at the industrial scale varied between 99.58 and 99.64% for sulfanilic acid with pressure drops around 2.5 kPa. The numerically optimized cyclones, when coupled with a partial recirculation system, extend the applicability of these simple devices to the fine particle collection that is typical of more expensive devices, such as venturis and online pulse jet bag filters.</description><subject>Applied sciences</subject><subject>Centrifugation, cyclones</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Liquid-liquid and fluid-solid mechanical separations</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNptkD9PwzAQxS0EEqUw8A2yMDAEbMeXOCOK-FNR0YoW1M1yEhu5pElku6jl02NU1C5MN7zfvXv3ELok-IZgSm6NwhSTHNQRGhCgOAbM4BgNMOc8Bs7hFJ05t8QYAzA2QIupaTofR7Kto1Fbr523RjbxrJKNiu43vbJmpVovm6B-KefNh_Sma6NORy_rVVAD2GyjSe_NynyrOiq2VdO1yp2jEy0bpy7-5hC9PdzPi6d4PHkcFXfjWCYp9TGUJYO0pElGNCk1qRkhkDOdszqXGRDNy4yzmuQpxSmVEtcl4DJNmNRQVSpJhuh651vZzjmrtOhDZGm3gmDxW4nYVxLYqx3bSxdyayvbyrjDAmMp4YQGLt5xxnm12evSfoo0SzIQ8-lMwOIV3ufFs5gdfGXlxLJb2zZ8_M_9HzHAfJQ</recordid><startdate>20030108</startdate><enddate>20030108</enddate><creator>Salcedo, Romualdo L</creator><creator>Pinho, Mário J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030108</creationdate><title>Pilot- and Industrial-Scale Experimental Investigation of Numerically Optimized Cyclones</title><author>Salcedo, Romualdo L ; Pinho, Mário J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-5bb456b2371f1bf1d411594f94d9a751f8b784d1962062aa0db50b634af5cce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Centrifugation, cyclones</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Liquid-liquid and fluid-solid mechanical separations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salcedo, Romualdo L</creatorcontrib><creatorcontrib>Pinho, Mário J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salcedo, Romualdo L</au><au>Pinho, Mário J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pilot- and Industrial-Scale Experimental Investigation of Numerically Optimized Cyclones</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2003-01-08</date><risdate>2003</risdate><volume>42</volume><issue>1</issue><spage>145</spage><epage>154</epage><pages>145-154</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>A new geometry of reverse-flow gas cyclones obtained by numerical optimization was shown at the laboratory scale to be significantly more efficient than other high-efficiency designs. However, it is usually recognized that experimental results obtained with laboratory-scale or sampling cyclones cannot be extrapolated to pilot or industrial scales. The present paper confirms, at these larger scales, the significantly larger collection efficiencies obtained with the numerically optimized design compared to a competing high-efficiency design available on the marketplace for the capture of fine sulfanilic acid (median volume diameter of 17 μm) at a Portuguese chemical manufacturer. A partial recirculation system within a collector-first arrangement further reduces emissions without an appreciable increase in pressure drop. The experimentally verified efficiencies at the industrial scale varied between 99.58 and 99.64% for sulfanilic acid with pressure drops around 2.5 kPa. The numerically optimized cyclones, when coupled with a partial recirculation system, extend the applicability of these simple devices to the fine particle collection that is typical of more expensive devices, such as venturis and online pulse jet bag filters.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie020195e</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2003-01, Vol.42 (1), p.145-154
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie020195e
source ACS Publications
subjects Applied sciences
Centrifugation, cyclones
Chemical engineering
Exact sciences and technology
Liquid-liquid and fluid-solid mechanical separations
title Pilot- and Industrial-Scale Experimental Investigation of Numerically Optimized Cyclones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pilot-%20and%20Industrial-Scale%20Experimental%20Investigation%20of%20Numerically%20Optimized%20Cyclones&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Salcedo,%20Romualdo%20L&rft.date=2003-01-08&rft.volume=42&rft.issue=1&rft.spage=145&rft.epage=154&rft.pages=145-154&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie020195e&rft_dat=%3Cacs_cross%3Eh31977182%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true