Pilot- and Industrial-Scale Experimental Investigation of Numerically Optimized Cyclones
A new geometry of reverse-flow gas cyclones obtained by numerical optimization was shown at the laboratory scale to be significantly more efficient than other high-efficiency designs. However, it is usually recognized that experimental results obtained with laboratory-scale or sampling cyclones cann...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2003-01, Vol.42 (1), p.145-154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 1 |
container_start_page | 145 |
container_title | Industrial & engineering chemistry research |
container_volume | 42 |
creator | Salcedo, Romualdo L Pinho, Mário J |
description | A new geometry of reverse-flow gas cyclones obtained by numerical optimization was shown at the laboratory scale to be significantly more efficient than other high-efficiency designs. However, it is usually recognized that experimental results obtained with laboratory-scale or sampling cyclones cannot be extrapolated to pilot or industrial scales. The present paper confirms, at these larger scales, the significantly larger collection efficiencies obtained with the numerically optimized design compared to a competing high-efficiency design available on the marketplace for the capture of fine sulfanilic acid (median volume diameter of 17 μm) at a Portuguese chemical manufacturer. A partial recirculation system within a collector-first arrangement further reduces emissions without an appreciable increase in pressure drop. The experimentally verified efficiencies at the industrial scale varied between 99.58 and 99.64% for sulfanilic acid with pressure drops around 2.5 kPa. The numerically optimized cyclones, when coupled with a partial recirculation system, extend the applicability of these simple devices to the fine particle collection that is typical of more expensive devices, such as venturis and online pulse jet bag filters. |
doi_str_mv | 10.1021/ie020195e |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie020195e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h31977182</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-5bb456b2371f1bf1d411594f94d9a751f8b784d1962062aa0db50b634af5cce33</originalsourceid><addsrcrecordid>eNptkD9PwzAQxS0EEqUw8A2yMDAEbMeXOCOK-FNR0YoW1M1yEhu5pElku6jl02NU1C5MN7zfvXv3ELok-IZgSm6NwhSTHNQRGhCgOAbM4BgNMOc8Bs7hFJ05t8QYAzA2QIupaTofR7Kto1Fbr523RjbxrJKNiu43vbJmpVovm6B-KefNh_Sma6NORy_rVVAD2GyjSe_NynyrOiq2VdO1yp2jEy0bpy7-5hC9PdzPi6d4PHkcFXfjWCYp9TGUJYO0pElGNCk1qRkhkDOdszqXGRDNy4yzmuQpxSmVEtcl4DJNmNRQVSpJhuh651vZzjmrtOhDZGm3gmDxW4nYVxLYqx3bSxdyayvbyrjDAmMp4YQGLt5xxnm12evSfoo0SzIQ8-lMwOIV3ufFs5gdfGXlxLJb2zZ8_M_9HzHAfJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pilot- and Industrial-Scale Experimental Investigation of Numerically Optimized Cyclones</title><source>ACS Publications</source><creator>Salcedo, Romualdo L ; Pinho, Mário J</creator><creatorcontrib>Salcedo, Romualdo L ; Pinho, Mário J</creatorcontrib><description>A new geometry of reverse-flow gas cyclones obtained by numerical optimization was shown at the laboratory scale to be significantly more efficient than other high-efficiency designs. However, it is usually recognized that experimental results obtained with laboratory-scale or sampling cyclones cannot be extrapolated to pilot or industrial scales. The present paper confirms, at these larger scales, the significantly larger collection efficiencies obtained with the numerically optimized design compared to a competing high-efficiency design available on the marketplace for the capture of fine sulfanilic acid (median volume diameter of 17 μm) at a Portuguese chemical manufacturer. A partial recirculation system within a collector-first arrangement further reduces emissions without an appreciable increase in pressure drop. The experimentally verified efficiencies at the industrial scale varied between 99.58 and 99.64% for sulfanilic acid with pressure drops around 2.5 kPa. The numerically optimized cyclones, when coupled with a partial recirculation system, extend the applicability of these simple devices to the fine particle collection that is typical of more expensive devices, such as venturis and online pulse jet bag filters.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie020195e</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Centrifugation, cyclones ; Chemical engineering ; Exact sciences and technology ; Liquid-liquid and fluid-solid mechanical separations</subject><ispartof>Industrial & engineering chemistry research, 2003-01, Vol.42 (1), p.145-154</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-5bb456b2371f1bf1d411594f94d9a751f8b784d1962062aa0db50b634af5cce33</citedby><cites>FETCH-LOGICAL-a362t-5bb456b2371f1bf1d411594f94d9a751f8b784d1962062aa0db50b634af5cce33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie020195e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie020195e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14461812$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Salcedo, Romualdo L</creatorcontrib><creatorcontrib>Pinho, Mário J</creatorcontrib><title>Pilot- and Industrial-Scale Experimental Investigation of Numerically Optimized Cyclones</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>A new geometry of reverse-flow gas cyclones obtained by numerical optimization was shown at the laboratory scale to be significantly more efficient than other high-efficiency designs. However, it is usually recognized that experimental results obtained with laboratory-scale or sampling cyclones cannot be extrapolated to pilot or industrial scales. The present paper confirms, at these larger scales, the significantly larger collection efficiencies obtained with the numerically optimized design compared to a competing high-efficiency design available on the marketplace for the capture of fine sulfanilic acid (median volume diameter of 17 μm) at a Portuguese chemical manufacturer. A partial recirculation system within a collector-first arrangement further reduces emissions without an appreciable increase in pressure drop. The experimentally verified efficiencies at the industrial scale varied between 99.58 and 99.64% for sulfanilic acid with pressure drops around 2.5 kPa. The numerically optimized cyclones, when coupled with a partial recirculation system, extend the applicability of these simple devices to the fine particle collection that is typical of more expensive devices, such as venturis and online pulse jet bag filters.</description><subject>Applied sciences</subject><subject>Centrifugation, cyclones</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Liquid-liquid and fluid-solid mechanical separations</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNptkD9PwzAQxS0EEqUw8A2yMDAEbMeXOCOK-FNR0YoW1M1yEhu5pElku6jl02NU1C5MN7zfvXv3ELok-IZgSm6NwhSTHNQRGhCgOAbM4BgNMOc8Bs7hFJ05t8QYAzA2QIupaTofR7Kto1Fbr523RjbxrJKNiu43vbJmpVovm6B-KefNh_Sma6NORy_rVVAD2GyjSe_NynyrOiq2VdO1yp2jEy0bpy7-5hC9PdzPi6d4PHkcFXfjWCYp9TGUJYO0pElGNCk1qRkhkDOdszqXGRDNy4yzmuQpxSmVEtcl4DJNmNRQVSpJhuh651vZzjmrtOhDZGm3gmDxW4nYVxLYqx3bSxdyayvbyrjDAmMp4YQGLt5xxnm12evSfoo0SzIQ8-lMwOIV3ufFs5gdfGXlxLJb2zZ8_M_9HzHAfJQ</recordid><startdate>20030108</startdate><enddate>20030108</enddate><creator>Salcedo, Romualdo L</creator><creator>Pinho, Mário J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030108</creationdate><title>Pilot- and Industrial-Scale Experimental Investigation of Numerically Optimized Cyclones</title><author>Salcedo, Romualdo L ; Pinho, Mário J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-5bb456b2371f1bf1d411594f94d9a751f8b784d1962062aa0db50b634af5cce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Centrifugation, cyclones</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Liquid-liquid and fluid-solid mechanical separations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salcedo, Romualdo L</creatorcontrib><creatorcontrib>Pinho, Mário J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salcedo, Romualdo L</au><au>Pinho, Mário J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pilot- and Industrial-Scale Experimental Investigation of Numerically Optimized Cyclones</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2003-01-08</date><risdate>2003</risdate><volume>42</volume><issue>1</issue><spage>145</spage><epage>154</epage><pages>145-154</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>A new geometry of reverse-flow gas cyclones obtained by numerical optimization was shown at the laboratory scale to be significantly more efficient than other high-efficiency designs. However, it is usually recognized that experimental results obtained with laboratory-scale or sampling cyclones cannot be extrapolated to pilot or industrial scales. The present paper confirms, at these larger scales, the significantly larger collection efficiencies obtained with the numerically optimized design compared to a competing high-efficiency design available on the marketplace for the capture of fine sulfanilic acid (median volume diameter of 17 μm) at a Portuguese chemical manufacturer. A partial recirculation system within a collector-first arrangement further reduces emissions without an appreciable increase in pressure drop. The experimentally verified efficiencies at the industrial scale varied between 99.58 and 99.64% for sulfanilic acid with pressure drops around 2.5 kPa. The numerically optimized cyclones, when coupled with a partial recirculation system, extend the applicability of these simple devices to the fine particle collection that is typical of more expensive devices, such as venturis and online pulse jet bag filters.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie020195e</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2003-01, Vol.42 (1), p.145-154 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ie020195e |
source | ACS Publications |
subjects | Applied sciences Centrifugation, cyclones Chemical engineering Exact sciences and technology Liquid-liquid and fluid-solid mechanical separations |
title | Pilot- and Industrial-Scale Experimental Investigation of Numerically Optimized Cyclones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pilot-%20and%20Industrial-Scale%20Experimental%20Investigation%20of%20Numerically%20Optimized%20Cyclones&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Salcedo,%20Romualdo%20L&rft.date=2003-01-08&rft.volume=42&rft.issue=1&rft.spage=145&rft.epage=154&rft.pages=145-154&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie020195e&rft_dat=%3Cacs_cross%3Eh31977182%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |