Fuzzy Segregation-Based Identification and Control of Nonlinear Dynamic Systems
In this work, we propose a new method to model and control complex nonlinear dynamic systems. The suggested scheme employs an output curve methodology to determine the initial set of dynamic clustering spaces. The choice of the optimal dynamic clustering space is made through an analysis of cross va...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2002-02, Vol.41 (3), p.538-552 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 552 |
---|---|
container_issue | 3 |
container_start_page | 538 |
container_title | Industrial & engineering chemistry research |
container_volume | 41 |
creator | Venkat, Aswin N Gudi, Ravindra D |
description | In this work, we propose a new method to model and control complex nonlinear dynamic systems. The suggested scheme employs an output curve methodology to determine the initial set of dynamic clustering spaces. The choice of the optimal dynamic clustering space is made through an analysis of cross validation performance and other indicative indices. A fuzzy clustering methodology for dynamic-model building is proposed. The relative advantages of the proposed adaptive fuzzy clustering method over other segregation methods are highlighted. For online control, a smooth internal model-switching strategy based on fuzzy methods is proposed and shown to be superior to other methods hitherto proposed in the literature. Two control structures based on the proposed methodology are discussed. The efficacy of the proposed fuzzy modeling and control schemes are demonstrated through several representative illustrative examples and by application to a high-purity distillation process. |
doi_str_mv | 10.1021/ie0102450 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie0102450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_HW145J9S_F</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-b67c0f50e65a55c3eb88a06c611a8efc05602cdc95e61c84f0c452044ff270823</originalsourceid><addsrcrecordid>eNptkEFPAjEQhRujiYge_Ad78eBhdbrb6ZajogiGiAkYj03ptqS4dEm7JMKvdxUjF08vmfnmTd4j5JLCDYWM3joDrTKEI9KhmEGKwPCYdEAIkaIQeErOYlwCACJjHTIZbHa7bTI1i2AWqnG1T-9VNGUyKo1vnHX6Z5goXyb92jehrpLaJi-1r5w3KiQPW69WTifTbWzMKp6TE6uqaC5-tUveBo-z_jAdT55G_btxqnKeNemcFxosguGoEHVu5kIo4JpTqoSxGpBDpkvdQ8OpFsyCZm0axqzNChBZ3iXXe18d6hiDsXId3EqFraQgv5uQf0207NWeXauoVWWD8trFw0HOeIFZr-XSPefaKJ9_exU-JC_yAuXsdSqH75Thc28qBwdfpaNc1pvg28T__P8CaWp4Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy Segregation-Based Identification and Control of Nonlinear Dynamic Systems</title><source>ACS Publications</source><creator>Venkat, Aswin N ; Gudi, Ravindra D</creator><creatorcontrib>Venkat, Aswin N ; Gudi, Ravindra D</creatorcontrib><description>In this work, we propose a new method to model and control complex nonlinear dynamic systems. The suggested scheme employs an output curve methodology to determine the initial set of dynamic clustering spaces. The choice of the optimal dynamic clustering space is made through an analysis of cross validation performance and other indicative indices. A fuzzy clustering methodology for dynamic-model building is proposed. The relative advantages of the proposed adaptive fuzzy clustering method over other segregation methods are highlighted. For online control, a smooth internal model-switching strategy based on fuzzy methods is proposed and shown to be superior to other methods hitherto proposed in the literature. Two control structures based on the proposed methodology are discussed. The efficacy of the proposed fuzzy modeling and control schemes are demonstrated through several representative illustrative examples and by application to a high-purity distillation process.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie0102450</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Modelling and identification ; Reactors</subject><ispartof>Industrial & engineering chemistry research, 2002-02, Vol.41 (3), p.538-552</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-b67c0f50e65a55c3eb88a06c611a8efc05602cdc95e61c84f0c452044ff270823</citedby><cites>FETCH-LOGICAL-a362t-b67c0f50e65a55c3eb88a06c611a8efc05602cdc95e61c84f0c452044ff270823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie0102450$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie0102450$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13467529$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Venkat, Aswin N</creatorcontrib><creatorcontrib>Gudi, Ravindra D</creatorcontrib><title>Fuzzy Segregation-Based Identification and Control of Nonlinear Dynamic Systems</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>In this work, we propose a new method to model and control complex nonlinear dynamic systems. The suggested scheme employs an output curve methodology to determine the initial set of dynamic clustering spaces. The choice of the optimal dynamic clustering space is made through an analysis of cross validation performance and other indicative indices. A fuzzy clustering methodology for dynamic-model building is proposed. The relative advantages of the proposed adaptive fuzzy clustering method over other segregation methods are highlighted. For online control, a smooth internal model-switching strategy based on fuzzy methods is proposed and shown to be superior to other methods hitherto proposed in the literature. Two control structures based on the proposed methodology are discussed. The efficacy of the proposed fuzzy modeling and control schemes are demonstrated through several representative illustrative examples and by application to a high-purity distillation process.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Modelling and identification</subject><subject>Reactors</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkEFPAjEQhRujiYge_Ad78eBhdbrb6ZajogiGiAkYj03ptqS4dEm7JMKvdxUjF08vmfnmTd4j5JLCDYWM3joDrTKEI9KhmEGKwPCYdEAIkaIQeErOYlwCACJjHTIZbHa7bTI1i2AWqnG1T-9VNGUyKo1vnHX6Z5goXyb92jehrpLaJi-1r5w3KiQPW69WTifTbWzMKp6TE6uqaC5-tUveBo-z_jAdT55G_btxqnKeNemcFxosguGoEHVu5kIo4JpTqoSxGpBDpkvdQ8OpFsyCZm0axqzNChBZ3iXXe18d6hiDsXId3EqFraQgv5uQf0207NWeXauoVWWD8trFw0HOeIFZr-XSPefaKJ9_exU-JC_yAuXsdSqH75Thc28qBwdfpaNc1pvg28T__P8CaWp4Aw</recordid><startdate>20020206</startdate><enddate>20020206</enddate><creator>Venkat, Aswin N</creator><creator>Gudi, Ravindra D</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020206</creationdate><title>Fuzzy Segregation-Based Identification and Control of Nonlinear Dynamic Systems</title><author>Venkat, Aswin N ; Gudi, Ravindra D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-b67c0f50e65a55c3eb88a06c611a8efc05602cdc95e61c84f0c452044ff270823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Modelling and identification</topic><topic>Reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkat, Aswin N</creatorcontrib><creatorcontrib>Gudi, Ravindra D</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkat, Aswin N</au><au>Gudi, Ravindra D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Segregation-Based Identification and Control of Nonlinear Dynamic Systems</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2002-02-06</date><risdate>2002</risdate><volume>41</volume><issue>3</issue><spage>538</spage><epage>552</epage><pages>538-552</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>In this work, we propose a new method to model and control complex nonlinear dynamic systems. The suggested scheme employs an output curve methodology to determine the initial set of dynamic clustering spaces. The choice of the optimal dynamic clustering space is made through an analysis of cross validation performance and other indicative indices. A fuzzy clustering methodology for dynamic-model building is proposed. The relative advantages of the proposed adaptive fuzzy clustering method over other segregation methods are highlighted. For online control, a smooth internal model-switching strategy based on fuzzy methods is proposed and shown to be superior to other methods hitherto proposed in the literature. Two control structures based on the proposed methodology are discussed. The efficacy of the proposed fuzzy modeling and control schemes are demonstrated through several representative illustrative examples and by application to a high-purity distillation process.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie0102450</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2002-02, Vol.41 (3), p.538-552 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ie0102450 |
source | ACS Publications |
subjects | Applied sciences Chemical engineering Computer science control theory systems Control theory. Systems Exact sciences and technology Modelling and identification Reactors |
title | Fuzzy Segregation-Based Identification and Control of Nonlinear Dynamic Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Segregation-Based%20Identification%20and%20Control%20of%20Nonlinear%20Dynamic%20Systems&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Venkat,%20Aswin%20N&rft.date=2002-02-06&rft.volume=41&rft.issue=3&rft.spage=538&rft.epage=552&rft.pages=538-552&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie0102450&rft_dat=%3Cistex_cross%3Eark_67375_TPS_HW145J9S_F%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |