Fuzzy Segregation-Based Identification and Control of Nonlinear Dynamic Systems

In this work, we propose a new method to model and control complex nonlinear dynamic systems. The suggested scheme employs an output curve methodology to determine the initial set of dynamic clustering spaces. The choice of the optimal dynamic clustering space is made through an analysis of cross va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2002-02, Vol.41 (3), p.538-552
Hauptverfasser: Venkat, Aswin N, Gudi, Ravindra D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 552
container_issue 3
container_start_page 538
container_title Industrial & engineering chemistry research
container_volume 41
creator Venkat, Aswin N
Gudi, Ravindra D
description In this work, we propose a new method to model and control complex nonlinear dynamic systems. The suggested scheme employs an output curve methodology to determine the initial set of dynamic clustering spaces. The choice of the optimal dynamic clustering space is made through an analysis of cross validation performance and other indicative indices. A fuzzy clustering methodology for dynamic-model building is proposed. The relative advantages of the proposed adaptive fuzzy clustering method over other segregation methods are highlighted. For online control, a smooth internal model-switching strategy based on fuzzy methods is proposed and shown to be superior to other methods hitherto proposed in the literature. Two control structures based on the proposed methodology are discussed. The efficacy of the proposed fuzzy modeling and control schemes are demonstrated through several representative illustrative examples and by application to a high-purity distillation process.
doi_str_mv 10.1021/ie0102450
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie0102450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_HW145J9S_F</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-b67c0f50e65a55c3eb88a06c611a8efc05602cdc95e61c84f0c452044ff270823</originalsourceid><addsrcrecordid>eNptkEFPAjEQhRujiYge_Ad78eBhdbrb6ZajogiGiAkYj03ptqS4dEm7JMKvdxUjF08vmfnmTd4j5JLCDYWM3joDrTKEI9KhmEGKwPCYdEAIkaIQeErOYlwCACJjHTIZbHa7bTI1i2AWqnG1T-9VNGUyKo1vnHX6Z5goXyb92jehrpLaJi-1r5w3KiQPW69WTifTbWzMKp6TE6uqaC5-tUveBo-z_jAdT55G_btxqnKeNemcFxosguGoEHVu5kIo4JpTqoSxGpBDpkvdQ8OpFsyCZm0axqzNChBZ3iXXe18d6hiDsXId3EqFraQgv5uQf0207NWeXauoVWWD8trFw0HOeIFZr-XSPefaKJ9_exU-JC_yAuXsdSqH75Thc28qBwdfpaNc1pvg28T__P8CaWp4Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy Segregation-Based Identification and Control of Nonlinear Dynamic Systems</title><source>ACS Publications</source><creator>Venkat, Aswin N ; Gudi, Ravindra D</creator><creatorcontrib>Venkat, Aswin N ; Gudi, Ravindra D</creatorcontrib><description>In this work, we propose a new method to model and control complex nonlinear dynamic systems. The suggested scheme employs an output curve methodology to determine the initial set of dynamic clustering spaces. The choice of the optimal dynamic clustering space is made through an analysis of cross validation performance and other indicative indices. A fuzzy clustering methodology for dynamic-model building is proposed. The relative advantages of the proposed adaptive fuzzy clustering method over other segregation methods are highlighted. For online control, a smooth internal model-switching strategy based on fuzzy methods is proposed and shown to be superior to other methods hitherto proposed in the literature. Two control structures based on the proposed methodology are discussed. The efficacy of the proposed fuzzy modeling and control schemes are demonstrated through several representative illustrative examples and by application to a high-purity distillation process.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie0102450</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Modelling and identification ; Reactors</subject><ispartof>Industrial &amp; engineering chemistry research, 2002-02, Vol.41 (3), p.538-552</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-b67c0f50e65a55c3eb88a06c611a8efc05602cdc95e61c84f0c452044ff270823</citedby><cites>FETCH-LOGICAL-a362t-b67c0f50e65a55c3eb88a06c611a8efc05602cdc95e61c84f0c452044ff270823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie0102450$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie0102450$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13467529$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Venkat, Aswin N</creatorcontrib><creatorcontrib>Gudi, Ravindra D</creatorcontrib><title>Fuzzy Segregation-Based Identification and Control of Nonlinear Dynamic Systems</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>In this work, we propose a new method to model and control complex nonlinear dynamic systems. The suggested scheme employs an output curve methodology to determine the initial set of dynamic clustering spaces. The choice of the optimal dynamic clustering space is made through an analysis of cross validation performance and other indicative indices. A fuzzy clustering methodology for dynamic-model building is proposed. The relative advantages of the proposed adaptive fuzzy clustering method over other segregation methods are highlighted. For online control, a smooth internal model-switching strategy based on fuzzy methods is proposed and shown to be superior to other methods hitherto proposed in the literature. Two control structures based on the proposed methodology are discussed. The efficacy of the proposed fuzzy modeling and control schemes are demonstrated through several representative illustrative examples and by application to a high-purity distillation process.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Modelling and identification</subject><subject>Reactors</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkEFPAjEQhRujiYge_Ad78eBhdbrb6ZajogiGiAkYj03ptqS4dEm7JMKvdxUjF08vmfnmTd4j5JLCDYWM3joDrTKEI9KhmEGKwPCYdEAIkaIQeErOYlwCACJjHTIZbHa7bTI1i2AWqnG1T-9VNGUyKo1vnHX6Z5goXyb92jehrpLaJi-1r5w3KiQPW69WTifTbWzMKp6TE6uqaC5-tUveBo-z_jAdT55G_btxqnKeNemcFxosguGoEHVu5kIo4JpTqoSxGpBDpkvdQ8OpFsyCZm0axqzNChBZ3iXXe18d6hiDsXId3EqFraQgv5uQf0207NWeXauoVWWD8trFw0HOeIFZr-XSPefaKJ9_exU-JC_yAuXsdSqH75Thc28qBwdfpaNc1pvg28T__P8CaWp4Aw</recordid><startdate>20020206</startdate><enddate>20020206</enddate><creator>Venkat, Aswin N</creator><creator>Gudi, Ravindra D</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020206</creationdate><title>Fuzzy Segregation-Based Identification and Control of Nonlinear Dynamic Systems</title><author>Venkat, Aswin N ; Gudi, Ravindra D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-b67c0f50e65a55c3eb88a06c611a8efc05602cdc95e61c84f0c452044ff270823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Modelling and identification</topic><topic>Reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkat, Aswin N</creatorcontrib><creatorcontrib>Gudi, Ravindra D</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkat, Aswin N</au><au>Gudi, Ravindra D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Segregation-Based Identification and Control of Nonlinear Dynamic Systems</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2002-02-06</date><risdate>2002</risdate><volume>41</volume><issue>3</issue><spage>538</spage><epage>552</epage><pages>538-552</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>In this work, we propose a new method to model and control complex nonlinear dynamic systems. The suggested scheme employs an output curve methodology to determine the initial set of dynamic clustering spaces. The choice of the optimal dynamic clustering space is made through an analysis of cross validation performance and other indicative indices. A fuzzy clustering methodology for dynamic-model building is proposed. The relative advantages of the proposed adaptive fuzzy clustering method over other segregation methods are highlighted. For online control, a smooth internal model-switching strategy based on fuzzy methods is proposed and shown to be superior to other methods hitherto proposed in the literature. Two control structures based on the proposed methodology are discussed. The efficacy of the proposed fuzzy modeling and control schemes are demonstrated through several representative illustrative examples and by application to a high-purity distillation process.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie0102450</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2002-02, Vol.41 (3), p.538-552
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie0102450
source ACS Publications
subjects Applied sciences
Chemical engineering
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Modelling and identification
Reactors
title Fuzzy Segregation-Based Identification and Control of Nonlinear Dynamic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Segregation-Based%20Identification%20and%20Control%20of%20Nonlinear%20Dynamic%20Systems&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Venkat,%20Aswin%20N&rft.date=2002-02-06&rft.volume=41&rft.issue=3&rft.spage=538&rft.epage=552&rft.pages=538-552&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie0102450&rft_dat=%3Cistex_cross%3Eark_67375_TPS_HW145J9S_F%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true