Thin-Film Hydrodynamics in Fluid Interface-Atomic Force Microscopy
Repulsive and attractive hydrodynamic interactions are measured between an oil droplet (n-hexadecane) and various glass microspheres in aqueous environments with an atomic force microscope (AFM). The magnitude and form of the hydrodynamics in a spherically wrapping thin film are investigated with a...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2002-02, Vol.41 (3), p.389-396 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 396 |
---|---|
container_issue | 3 |
container_start_page | 389 |
container_title | Industrial & engineering chemistry research |
container_volume | 41 |
creator | Aston, D. Eric Berg, John C |
description | Repulsive and attractive hydrodynamic interactions are measured between an oil droplet (n-hexadecane) and various glass microspheres in aqueous environments with an atomic force microscope (AFM). The magnitude and form of the hydrodynamics in a spherically wrapping thin film are investigated with a parametric study on external approach velocity and probe radius. The actual sphere−drop separation at closest approach can be experimentally deconvoluted in some situations from parametric data without ambiguity. Theoretical force profiles are calculated from the augmented Young−Laplace equation modified to allow for two distinct hydrodynamic drainage regimes: Reynolds lubrication for thick films with slightly deformed drops and a wrapping film condition for the indented interface. Also, an increase in film stability is directly observed as a function of velocity between a hydrophobized glass sphere and oil in pure water and in the presence of sodium dodecyl sulfate (SDS) below the critical micelle concentration (CMC). |
doi_str_mv | 10.1021/ie0101240 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie0101240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_BJ5GCN6R_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-a391t-7bf9a2ba25ee4f9cb76a043bdc9cbeb52de4fd3b21b290702025d7983ebe22e33</originalsourceid><addsrcrecordid>eNptj0tPwzAQhC0EEqVw4B_kwoGDYf3K49hWpC0qD0E5W7bjCJc0qexUav49qYraC6dd7Xw7o0HolsADAUoenQUChHI4QwMiKGABXJyjAaRpikWaikt0FcIKAITgfIDGy29X49xV62jWFb4pulqtnQmRq6O82roimtet9aUyFo_appeivPHGRi_O-CaYZtNdo4tSVcHe_M0h-sqflpMZXrxN55PRAiuWkRYnuswU1YoKa3mZGZ3ECjjThel3qwUt-nPBNCWaZpAABSqKJEuZ1ZZSy9gQ3R9898HB21JuvFsr30kCcl9eHsv37N2B3ahgVFV6VRsXTg-Mx4kgpOfwgXOhtbujrvyPjBOWCLl8_5TjZzGdvMYfUpx8lQly1Wx93Tf-J_8XjzpzwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thin-Film Hydrodynamics in Fluid Interface-Atomic Force Microscopy</title><source>ACS Publications</source><creator>Aston, D. Eric ; Berg, John C</creator><creatorcontrib>Aston, D. Eric ; Berg, John C</creatorcontrib><description>Repulsive and attractive hydrodynamic interactions are measured between an oil droplet (n-hexadecane) and various glass microspheres in aqueous environments with an atomic force microscope (AFM). The magnitude and form of the hydrodynamics in a spherically wrapping thin film are investigated with a parametric study on external approach velocity and probe radius. The actual sphere−drop separation at closest approach can be experimentally deconvoluted in some situations from parametric data without ambiguity. Theoretical force profiles are calculated from the augmented Young−Laplace equation modified to allow for two distinct hydrodynamic drainage regimes: Reynolds lubrication for thick films with slightly deformed drops and a wrapping film condition for the indented interface. Also, an increase in film stability is directly observed as a function of velocity between a hydrophobized glass sphere and oil in pure water and in the presence of sodium dodecyl sulfate (SDS) below the critical micelle concentration (CMC).</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie0101240</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Solid-liquid interface ; Surface physical chemistry</subject><ispartof>Industrial & engineering chemistry research, 2002-02, Vol.41 (3), p.389-396</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a391t-7bf9a2ba25ee4f9cb76a043bdc9cbeb52de4fd3b21b290702025d7983ebe22e33</citedby><cites>FETCH-LOGICAL-a391t-7bf9a2ba25ee4f9cb76a043bdc9cbeb52de4fd3b21b290702025d7983ebe22e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie0101240$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie0101240$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13467511$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aston, D. Eric</creatorcontrib><creatorcontrib>Berg, John C</creatorcontrib><title>Thin-Film Hydrodynamics in Fluid Interface-Atomic Force Microscopy</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Repulsive and attractive hydrodynamic interactions are measured between an oil droplet (n-hexadecane) and various glass microspheres in aqueous environments with an atomic force microscope (AFM). The magnitude and form of the hydrodynamics in a spherically wrapping thin film are investigated with a parametric study on external approach velocity and probe radius. The actual sphere−drop separation at closest approach can be experimentally deconvoluted in some situations from parametric data without ambiguity. Theoretical force profiles are calculated from the augmented Young−Laplace equation modified to allow for two distinct hydrodynamic drainage regimes: Reynolds lubrication for thick films with slightly deformed drops and a wrapping film condition for the indented interface. Also, an increase in film stability is directly observed as a function of velocity between a hydrophobized glass sphere and oil in pure water and in the presence of sodium dodecyl sulfate (SDS) below the critical micelle concentration (CMC).</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Solid-liquid interface</subject><subject>Surface physical chemistry</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptj0tPwzAQhC0EEqVw4B_kwoGDYf3K49hWpC0qD0E5W7bjCJc0qexUav49qYraC6dd7Xw7o0HolsADAUoenQUChHI4QwMiKGABXJyjAaRpikWaikt0FcIKAITgfIDGy29X49xV62jWFb4pulqtnQmRq6O82roimtet9aUyFo_appeivPHGRi_O-CaYZtNdo4tSVcHe_M0h-sqflpMZXrxN55PRAiuWkRYnuswU1YoKa3mZGZ3ECjjThel3qwUt-nPBNCWaZpAABSqKJEuZ1ZZSy9gQ3R9898HB21JuvFsr30kCcl9eHsv37N2B3ahgVFV6VRsXTg-Mx4kgpOfwgXOhtbujrvyPjBOWCLl8_5TjZzGdvMYfUpx8lQly1Wx93Tf-J_8XjzpzwA</recordid><startdate>20020206</startdate><enddate>20020206</enddate><creator>Aston, D. Eric</creator><creator>Berg, John C</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020206</creationdate><title>Thin-Film Hydrodynamics in Fluid Interface-Atomic Force Microscopy</title><author>Aston, D. Eric ; Berg, John C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a391t-7bf9a2ba25ee4f9cb76a043bdc9cbeb52de4fd3b21b290702025d7983ebe22e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Solid-liquid interface</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aston, D. Eric</creatorcontrib><creatorcontrib>Berg, John C</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aston, D. Eric</au><au>Berg, John C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-Film Hydrodynamics in Fluid Interface-Atomic Force Microscopy</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2002-02-06</date><risdate>2002</risdate><volume>41</volume><issue>3</issue><spage>389</spage><epage>396</epage><pages>389-396</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Repulsive and attractive hydrodynamic interactions are measured between an oil droplet (n-hexadecane) and various glass microspheres in aqueous environments with an atomic force microscope (AFM). The magnitude and form of the hydrodynamics in a spherically wrapping thin film are investigated with a parametric study on external approach velocity and probe radius. The actual sphere−drop separation at closest approach can be experimentally deconvoluted in some situations from parametric data without ambiguity. Theoretical force profiles are calculated from the augmented Young−Laplace equation modified to allow for two distinct hydrodynamic drainage regimes: Reynolds lubrication for thick films with slightly deformed drops and a wrapping film condition for the indented interface. Also, an increase in film stability is directly observed as a function of velocity between a hydrophobized glass sphere and oil in pure water and in the presence of sodium dodecyl sulfate (SDS) below the critical micelle concentration (CMC).</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie0101240</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2002-02, Vol.41 (3), p.389-396 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ie0101240 |
source | ACS Publications |
subjects | Chemistry Exact sciences and technology General and physical chemistry Solid-liquid interface Surface physical chemistry |
title | Thin-Film Hydrodynamics in Fluid Interface-Atomic Force Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-Film%20Hydrodynamics%20in%20Fluid%20Interface-Atomic%20Force%20Microscopy&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Aston,%20D.%20Eric&rft.date=2002-02-06&rft.volume=41&rft.issue=3&rft.spage=389&rft.epage=396&rft.pages=389-396&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie0101240&rft_dat=%3Cistex_cross%3Eark_67375_TPS_BJ5GCN6R_5%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |