Kinetic Study of UV Peroxidation of Bis(2-chloroethyl) Ether in Aqueous Solution

The groundwater aquifer underneath a chemical manufacturing plant in Southeast Texas has been contaminated by the leachate from its landfill. Based on computer simulations, the current air flow rate used in the air-stripping unit is about 10 times higher than the calculated flow rate if bis(2-chloro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 1995-06, Vol.34 (6), p.1960-1968
Hauptverfasser: Li, K. Y, Liu, C. C, Ni, Q, Liu, Z. F, Huang, F. Y. C, Colapret, J. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1968
container_issue 6
container_start_page 1960
container_title Industrial & engineering chemistry research
container_volume 34
creator Li, K. Y
Liu, C. C
Ni, Q
Liu, Z. F
Huang, F. Y. C
Colapret, J. A
description The groundwater aquifer underneath a chemical manufacturing plant in Southeast Texas has been contaminated by the leachate from its landfill. Based on computer simulations, the current air flow rate used in the air-stripping unit is about 10 times higher than the calculated flow rate if bis(2-chloroethyl) ether (DCEE) is excluded. This excessive air flow rate has caused maintenance problems and a higher energy consumption. It was proposed to treat the contaminated groundwater by air stripping to remove the volatile compounds and by UV/H{sub 2}O{sub 2} oxidation to destruct the low-volatility compounds such as DCEE. Experimental data from the UV peroxidation of DCEE in aqueous solution indicated the rate equation is 0.163[DCEE]{sup 0.61}[H{sub 2}O{sub 2}]{sup 0.54}. Important intermediates identified are 2-chloroethyl acetate, an enolic tautomer of 2-chloroethyl acetate, 2-chloroethoxyethene, 2-chloroethanol, acetaldehyde, ethylene oxide, and chloroethene. All the intermediates could be reduced to undetectable levels after 30 min of irradiation when DCEE/H{sub 2}O{sub 2} initial ratio of 1/10 was used. A reaction mechanism with complex pathways through both the attack of hydroxy free radical and the direct photolysis on DCEE was proposed. Intermediate identification and the rate equation suggested that the pathways in which DCEE is attacked by hydroxy free radicals are predominant. The rate equation derived from this mechanism predicted the peroxidation of DCEE is half-order with respect to both DCEE and H{sub 2}O{sub 2} concentrations.
doi_str_mv 10.1021/ie00045a005
format Article
fullrecord <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie00045a005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_XZ043CVB_G</sourcerecordid><originalsourceid>FETCH-LOGICAL-a356t-aa029aa8301476256f4d16c26550a5ced5cca8cea6559a404cff76eeccf2456b3</originalsourceid><addsrcrecordid>eNpt0F1LwzAUBuAgCs6PK_9ABUFFqkmbk9bLOfzCgYNNEW_C8Sxl0dpokoL793ZUxAuvwnnPkxBexvYEPxU8E2fWcM4lIOewxgYCMp5CN6-zAS_LMoWyhE22FcJrxwCkHLDJnW1MtJRMYztfJq5KHh6TifHuy84xWtesogsbjrKUFrXzzsTFsj5OLuPC-MQ2yfCzNa4NydTV7crvsI0K62B2f85t9nB1ORvdpOP769vRcJxiDiqmiDw7RyxzLmShMlCVnAtFmQLgCGTmQIQlGeyCc5RcUlUVyhiiKpOgXvJttt-_60K0OpCNhhbkmsZQ1KIo84J35qQ35F0I3lT6w9t39EstuF4Vpv8U1umDXn9gIKwrjw3Z8Hslh1wpITuW9syGaL5-1-jftCryAvRsMtVPz1zmo8cLfd35w94jBf3qWt90tfz7gW_CGYUv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic Study of UV Peroxidation of Bis(2-chloroethyl) Ether in Aqueous Solution</title><source>ACS Publications</source><creator>Li, K. Y ; Liu, C. C ; Ni, Q ; Liu, Z. F ; Huang, F. Y. C ; Colapret, J. A</creator><creatorcontrib>Li, K. Y ; Liu, C. C ; Ni, Q ; Liu, Z. F ; Huang, F. Y. C ; Colapret, J. A</creatorcontrib><description>The groundwater aquifer underneath a chemical manufacturing plant in Southeast Texas has been contaminated by the leachate from its landfill. Based on computer simulations, the current air flow rate used in the air-stripping unit is about 10 times higher than the calculated flow rate if bis(2-chloroethyl) ether (DCEE) is excluded. This excessive air flow rate has caused maintenance problems and a higher energy consumption. It was proposed to treat the contaminated groundwater by air stripping to remove the volatile compounds and by UV/H{sub 2}O{sub 2} oxidation to destruct the low-volatility compounds such as DCEE. Experimental data from the UV peroxidation of DCEE in aqueous solution indicated the rate equation is 0.163[DCEE]{sup 0.61}[H{sub 2}O{sub 2}]{sup 0.54}. Important intermediates identified are 2-chloroethyl acetate, an enolic tautomer of 2-chloroethyl acetate, 2-chloroethoxyethene, 2-chloroethanol, acetaldehyde, ethylene oxide, and chloroethene. All the intermediates could be reduced to undetectable levels after 30 min of irradiation when DCEE/H{sub 2}O{sub 2} initial ratio of 1/10 was used. A reaction mechanism with complex pathways through both the attack of hydroxy free radical and the direct photolysis on DCEE was proposed. Intermediate identification and the rate equation suggested that the pathways in which DCEE is attacked by hydroxy free radicals are predominant. The rate equation derived from this mechanism predicted the peroxidation of DCEE is half-order with respect to both DCEE and H{sub 2}O{sub 2} concentrations.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie00045a005</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>AIR FLOW ; Applied sciences ; AQUIFERS ; CHEMICAL PLANTS ; CHEMICAL REACTION KINETICS ; ENVIRONMENTAL SCIENCES ; ETHERS ; Exact sciences and technology ; FLOW RATE ; GROUND WATER ; Groundwaters ; HYDROGEN PEROXIDE ; Natural water pollution ; OXIDATION ; PHOTOLYSIS ; Pollution ; REACTION INTERMEDIATES ; REMEDIAL ACTION ; SANITARY LANDFILLS ; ULTRAVIOLET RADIATION ; Water treatment and pollution</subject><ispartof>Industrial &amp; engineering chemistry research, 1995-06, Vol.34 (6), p.1960-1968</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a356t-aa029aa8301476256f4d16c26550a5ced5cca8cea6559a404cff76eeccf2456b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie00045a005$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie00045a005$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3536614$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/178370$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, K. Y</creatorcontrib><creatorcontrib>Liu, C. C</creatorcontrib><creatorcontrib>Ni, Q</creatorcontrib><creatorcontrib>Liu, Z. F</creatorcontrib><creatorcontrib>Huang, F. Y. C</creatorcontrib><creatorcontrib>Colapret, J. A</creatorcontrib><title>Kinetic Study of UV Peroxidation of Bis(2-chloroethyl) Ether in Aqueous Solution</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The groundwater aquifer underneath a chemical manufacturing plant in Southeast Texas has been contaminated by the leachate from its landfill. Based on computer simulations, the current air flow rate used in the air-stripping unit is about 10 times higher than the calculated flow rate if bis(2-chloroethyl) ether (DCEE) is excluded. This excessive air flow rate has caused maintenance problems and a higher energy consumption. It was proposed to treat the contaminated groundwater by air stripping to remove the volatile compounds and by UV/H{sub 2}O{sub 2} oxidation to destruct the low-volatility compounds such as DCEE. Experimental data from the UV peroxidation of DCEE in aqueous solution indicated the rate equation is 0.163[DCEE]{sup 0.61}[H{sub 2}O{sub 2}]{sup 0.54}. Important intermediates identified are 2-chloroethyl acetate, an enolic tautomer of 2-chloroethyl acetate, 2-chloroethoxyethene, 2-chloroethanol, acetaldehyde, ethylene oxide, and chloroethene. All the intermediates could be reduced to undetectable levels after 30 min of irradiation when DCEE/H{sub 2}O{sub 2} initial ratio of 1/10 was used. A reaction mechanism with complex pathways through both the attack of hydroxy free radical and the direct photolysis on DCEE was proposed. Intermediate identification and the rate equation suggested that the pathways in which DCEE is attacked by hydroxy free radicals are predominant. The rate equation derived from this mechanism predicted the peroxidation of DCEE is half-order with respect to both DCEE and H{sub 2}O{sub 2} concentrations.</description><subject>AIR FLOW</subject><subject>Applied sciences</subject><subject>AQUIFERS</subject><subject>CHEMICAL PLANTS</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>ETHERS</subject><subject>Exact sciences and technology</subject><subject>FLOW RATE</subject><subject>GROUND WATER</subject><subject>Groundwaters</subject><subject>HYDROGEN PEROXIDE</subject><subject>Natural water pollution</subject><subject>OXIDATION</subject><subject>PHOTOLYSIS</subject><subject>Pollution</subject><subject>REACTION INTERMEDIATES</subject><subject>REMEDIAL ACTION</subject><subject>SANITARY LANDFILLS</subject><subject>ULTRAVIOLET RADIATION</subject><subject>Water treatment and pollution</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpt0F1LwzAUBuAgCs6PK_9ABUFFqkmbk9bLOfzCgYNNEW_C8Sxl0dpokoL793ZUxAuvwnnPkxBexvYEPxU8E2fWcM4lIOewxgYCMp5CN6-zAS_LMoWyhE22FcJrxwCkHLDJnW1MtJRMYztfJq5KHh6TifHuy84xWtesogsbjrKUFrXzzsTFsj5OLuPC-MQ2yfCzNa4NydTV7crvsI0K62B2f85t9nB1ORvdpOP769vRcJxiDiqmiDw7RyxzLmShMlCVnAtFmQLgCGTmQIQlGeyCc5RcUlUVyhiiKpOgXvJttt-_60K0OpCNhhbkmsZQ1KIo84J35qQ35F0I3lT6w9t39EstuF4Vpv8U1umDXn9gIKwrjw3Z8Hslh1wpITuW9syGaL5-1-jftCryAvRsMtVPz1zmo8cLfd35w94jBf3qWt90tfz7gW_CGYUv</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Li, K. Y</creator><creator>Liu, C. C</creator><creator>Ni, Q</creator><creator>Liu, Z. F</creator><creator>Huang, F. Y. C</creator><creator>Colapret, J. A</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19950601</creationdate><title>Kinetic Study of UV Peroxidation of Bis(2-chloroethyl) Ether in Aqueous Solution</title><author>Li, K. Y ; Liu, C. C ; Ni, Q ; Liu, Z. F ; Huang, F. Y. C ; Colapret, J. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a356t-aa029aa8301476256f4d16c26550a5ced5cca8cea6559a404cff76eeccf2456b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>AIR FLOW</topic><topic>Applied sciences</topic><topic>AQUIFERS</topic><topic>CHEMICAL PLANTS</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>ETHERS</topic><topic>Exact sciences and technology</topic><topic>FLOW RATE</topic><topic>GROUND WATER</topic><topic>Groundwaters</topic><topic>HYDROGEN PEROXIDE</topic><topic>Natural water pollution</topic><topic>OXIDATION</topic><topic>PHOTOLYSIS</topic><topic>Pollution</topic><topic>REACTION INTERMEDIATES</topic><topic>REMEDIAL ACTION</topic><topic>SANITARY LANDFILLS</topic><topic>ULTRAVIOLET RADIATION</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, K. Y</creatorcontrib><creatorcontrib>Liu, C. C</creatorcontrib><creatorcontrib>Ni, Q</creatorcontrib><creatorcontrib>Liu, Z. F</creatorcontrib><creatorcontrib>Huang, F. Y. C</creatorcontrib><creatorcontrib>Colapret, J. A</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, K. Y</au><au>Liu, C. C</au><au>Ni, Q</au><au>Liu, Z. F</au><au>Huang, F. Y. C</au><au>Colapret, J. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Study of UV Peroxidation of Bis(2-chloroethyl) Ether in Aqueous Solution</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1995-06-01</date><risdate>1995</risdate><volume>34</volume><issue>6</issue><spage>1960</spage><epage>1968</epage><pages>1960-1968</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>The groundwater aquifer underneath a chemical manufacturing plant in Southeast Texas has been contaminated by the leachate from its landfill. Based on computer simulations, the current air flow rate used in the air-stripping unit is about 10 times higher than the calculated flow rate if bis(2-chloroethyl) ether (DCEE) is excluded. This excessive air flow rate has caused maintenance problems and a higher energy consumption. It was proposed to treat the contaminated groundwater by air stripping to remove the volatile compounds and by UV/H{sub 2}O{sub 2} oxidation to destruct the low-volatility compounds such as DCEE. Experimental data from the UV peroxidation of DCEE in aqueous solution indicated the rate equation is 0.163[DCEE]{sup 0.61}[H{sub 2}O{sub 2}]{sup 0.54}. Important intermediates identified are 2-chloroethyl acetate, an enolic tautomer of 2-chloroethyl acetate, 2-chloroethoxyethene, 2-chloroethanol, acetaldehyde, ethylene oxide, and chloroethene. All the intermediates could be reduced to undetectable levels after 30 min of irradiation when DCEE/H{sub 2}O{sub 2} initial ratio of 1/10 was used. A reaction mechanism with complex pathways through both the attack of hydroxy free radical and the direct photolysis on DCEE was proposed. Intermediate identification and the rate equation suggested that the pathways in which DCEE is attacked by hydroxy free radicals are predominant. The rate equation derived from this mechanism predicted the peroxidation of DCEE is half-order with respect to both DCEE and H{sub 2}O{sub 2} concentrations.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie00045a005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 1995-06, Vol.34 (6), p.1960-1968
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie00045a005
source ACS Publications
subjects AIR FLOW
Applied sciences
AQUIFERS
CHEMICAL PLANTS
CHEMICAL REACTION KINETICS
ENVIRONMENTAL SCIENCES
ETHERS
Exact sciences and technology
FLOW RATE
GROUND WATER
Groundwaters
HYDROGEN PEROXIDE
Natural water pollution
OXIDATION
PHOTOLYSIS
Pollution
REACTION INTERMEDIATES
REMEDIAL ACTION
SANITARY LANDFILLS
ULTRAVIOLET RADIATION
Water treatment and pollution
title Kinetic Study of UV Peroxidation of Bis(2-chloroethyl) Ether in Aqueous Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Study%20of%20UV%20Peroxidation%20of%20Bis(2-chloroethyl)%20Ether%20in%20Aqueous%20Solution&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Li,%20K.%20Y&rft.date=1995-06-01&rft.volume=34&rft.issue=6&rft.spage=1960&rft.epage=1968&rft.pages=1960-1968&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie00045a005&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_XZ043CVB_G%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true