Kinetic Study of UV Peroxidation of Bis(2-chloroethyl) Ether in Aqueous Solution
The groundwater aquifer underneath a chemical manufacturing plant in Southeast Texas has been contaminated by the leachate from its landfill. Based on computer simulations, the current air flow rate used in the air-stripping unit is about 10 times higher than the calculated flow rate if bis(2-chloro...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 1995-06, Vol.34 (6), p.1960-1968 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1968 |
---|---|
container_issue | 6 |
container_start_page | 1960 |
container_title | Industrial & engineering chemistry research |
container_volume | 34 |
creator | Li, K. Y Liu, C. C Ni, Q Liu, Z. F Huang, F. Y. C Colapret, J. A |
description | The groundwater aquifer underneath a chemical manufacturing plant in Southeast Texas has been contaminated by the leachate from its landfill. Based on computer simulations, the current air flow rate used in the air-stripping unit is about 10 times higher than the calculated flow rate if bis(2-chloroethyl) ether (DCEE) is excluded. This excessive air flow rate has caused maintenance problems and a higher energy consumption. It was proposed to treat the contaminated groundwater by air stripping to remove the volatile compounds and by UV/H{sub 2}O{sub 2} oxidation to destruct the low-volatility compounds such as DCEE. Experimental data from the UV peroxidation of DCEE in aqueous solution indicated the rate equation is 0.163[DCEE]{sup 0.61}[H{sub 2}O{sub 2}]{sup 0.54}. Important intermediates identified are 2-chloroethyl acetate, an enolic tautomer of 2-chloroethyl acetate, 2-chloroethoxyethene, 2-chloroethanol, acetaldehyde, ethylene oxide, and chloroethene. All the intermediates could be reduced to undetectable levels after 30 min of irradiation when DCEE/H{sub 2}O{sub 2} initial ratio of 1/10 was used. A reaction mechanism with complex pathways through both the attack of hydroxy free radical and the direct photolysis on DCEE was proposed. Intermediate identification and the rate equation suggested that the pathways in which DCEE is attacked by hydroxy free radicals are predominant. The rate equation derived from this mechanism predicted the peroxidation of DCEE is half-order with respect to both DCEE and H{sub 2}O{sub 2} concentrations. |
doi_str_mv | 10.1021/ie00045a005 |
format | Article |
fullrecord | <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie00045a005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_XZ043CVB_G</sourcerecordid><originalsourceid>FETCH-LOGICAL-a356t-aa029aa8301476256f4d16c26550a5ced5cca8cea6559a404cff76eeccf2456b3</originalsourceid><addsrcrecordid>eNpt0F1LwzAUBuAgCs6PK_9ABUFFqkmbk9bLOfzCgYNNEW_C8Sxl0dpokoL793ZUxAuvwnnPkxBexvYEPxU8E2fWcM4lIOewxgYCMp5CN6-zAS_LMoWyhE22FcJrxwCkHLDJnW1MtJRMYztfJq5KHh6TifHuy84xWtesogsbjrKUFrXzzsTFsj5OLuPC-MQ2yfCzNa4NydTV7crvsI0K62B2f85t9nB1ORvdpOP769vRcJxiDiqmiDw7RyxzLmShMlCVnAtFmQLgCGTmQIQlGeyCc5RcUlUVyhiiKpOgXvJttt-_60K0OpCNhhbkmsZQ1KIo84J35qQ35F0I3lT6w9t39EstuF4Vpv8U1umDXn9gIKwrjw3Z8Hslh1wpITuW9syGaL5-1-jftCryAvRsMtVPz1zmo8cLfd35w94jBf3qWt90tfz7gW_CGYUv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic Study of UV Peroxidation of Bis(2-chloroethyl) Ether in Aqueous Solution</title><source>ACS Publications</source><creator>Li, K. Y ; Liu, C. C ; Ni, Q ; Liu, Z. F ; Huang, F. Y. C ; Colapret, J. A</creator><creatorcontrib>Li, K. Y ; Liu, C. C ; Ni, Q ; Liu, Z. F ; Huang, F. Y. C ; Colapret, J. A</creatorcontrib><description>The groundwater aquifer underneath a chemical manufacturing plant in Southeast Texas has been contaminated by the leachate from its landfill. Based on computer simulations, the current air flow rate used in the air-stripping unit is about 10 times higher than the calculated flow rate if bis(2-chloroethyl) ether (DCEE) is excluded. This excessive air flow rate has caused maintenance problems and a higher energy consumption. It was proposed to treat the contaminated groundwater by air stripping to remove the volatile compounds and by UV/H{sub 2}O{sub 2} oxidation to destruct the low-volatility compounds such as DCEE. Experimental data from the UV peroxidation of DCEE in aqueous solution indicated the rate equation is 0.163[DCEE]{sup 0.61}[H{sub 2}O{sub 2}]{sup 0.54}. Important intermediates identified are 2-chloroethyl acetate, an enolic tautomer of 2-chloroethyl acetate, 2-chloroethoxyethene, 2-chloroethanol, acetaldehyde, ethylene oxide, and chloroethene. All the intermediates could be reduced to undetectable levels after 30 min of irradiation when DCEE/H{sub 2}O{sub 2} initial ratio of 1/10 was used. A reaction mechanism with complex pathways through both the attack of hydroxy free radical and the direct photolysis on DCEE was proposed. Intermediate identification and the rate equation suggested that the pathways in which DCEE is attacked by hydroxy free radicals are predominant. The rate equation derived from this mechanism predicted the peroxidation of DCEE is half-order with respect to both DCEE and H{sub 2}O{sub 2} concentrations.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie00045a005</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>AIR FLOW ; Applied sciences ; AQUIFERS ; CHEMICAL PLANTS ; CHEMICAL REACTION KINETICS ; ENVIRONMENTAL SCIENCES ; ETHERS ; Exact sciences and technology ; FLOW RATE ; GROUND WATER ; Groundwaters ; HYDROGEN PEROXIDE ; Natural water pollution ; OXIDATION ; PHOTOLYSIS ; Pollution ; REACTION INTERMEDIATES ; REMEDIAL ACTION ; SANITARY LANDFILLS ; ULTRAVIOLET RADIATION ; Water treatment and pollution</subject><ispartof>Industrial & engineering chemistry research, 1995-06, Vol.34 (6), p.1960-1968</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a356t-aa029aa8301476256f4d16c26550a5ced5cca8cea6559a404cff76eeccf2456b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie00045a005$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie00045a005$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3536614$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/178370$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, K. Y</creatorcontrib><creatorcontrib>Liu, C. C</creatorcontrib><creatorcontrib>Ni, Q</creatorcontrib><creatorcontrib>Liu, Z. F</creatorcontrib><creatorcontrib>Huang, F. Y. C</creatorcontrib><creatorcontrib>Colapret, J. A</creatorcontrib><title>Kinetic Study of UV Peroxidation of Bis(2-chloroethyl) Ether in Aqueous Solution</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The groundwater aquifer underneath a chemical manufacturing plant in Southeast Texas has been contaminated by the leachate from its landfill. Based on computer simulations, the current air flow rate used in the air-stripping unit is about 10 times higher than the calculated flow rate if bis(2-chloroethyl) ether (DCEE) is excluded. This excessive air flow rate has caused maintenance problems and a higher energy consumption. It was proposed to treat the contaminated groundwater by air stripping to remove the volatile compounds and by UV/H{sub 2}O{sub 2} oxidation to destruct the low-volatility compounds such as DCEE. Experimental data from the UV peroxidation of DCEE in aqueous solution indicated the rate equation is 0.163[DCEE]{sup 0.61}[H{sub 2}O{sub 2}]{sup 0.54}. Important intermediates identified are 2-chloroethyl acetate, an enolic tautomer of 2-chloroethyl acetate, 2-chloroethoxyethene, 2-chloroethanol, acetaldehyde, ethylene oxide, and chloroethene. All the intermediates could be reduced to undetectable levels after 30 min of irradiation when DCEE/H{sub 2}O{sub 2} initial ratio of 1/10 was used. A reaction mechanism with complex pathways through both the attack of hydroxy free radical and the direct photolysis on DCEE was proposed. Intermediate identification and the rate equation suggested that the pathways in which DCEE is attacked by hydroxy free radicals are predominant. The rate equation derived from this mechanism predicted the peroxidation of DCEE is half-order with respect to both DCEE and H{sub 2}O{sub 2} concentrations.</description><subject>AIR FLOW</subject><subject>Applied sciences</subject><subject>AQUIFERS</subject><subject>CHEMICAL PLANTS</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>ETHERS</subject><subject>Exact sciences and technology</subject><subject>FLOW RATE</subject><subject>GROUND WATER</subject><subject>Groundwaters</subject><subject>HYDROGEN PEROXIDE</subject><subject>Natural water pollution</subject><subject>OXIDATION</subject><subject>PHOTOLYSIS</subject><subject>Pollution</subject><subject>REACTION INTERMEDIATES</subject><subject>REMEDIAL ACTION</subject><subject>SANITARY LANDFILLS</subject><subject>ULTRAVIOLET RADIATION</subject><subject>Water treatment and pollution</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpt0F1LwzAUBuAgCs6PK_9ABUFFqkmbk9bLOfzCgYNNEW_C8Sxl0dpokoL793ZUxAuvwnnPkxBexvYEPxU8E2fWcM4lIOewxgYCMp5CN6-zAS_LMoWyhE22FcJrxwCkHLDJnW1MtJRMYztfJq5KHh6TifHuy84xWtesogsbjrKUFrXzzsTFsj5OLuPC-MQ2yfCzNa4NydTV7crvsI0K62B2f85t9nB1ORvdpOP769vRcJxiDiqmiDw7RyxzLmShMlCVnAtFmQLgCGTmQIQlGeyCc5RcUlUVyhiiKpOgXvJttt-_60K0OpCNhhbkmsZQ1KIo84J35qQ35F0I3lT6w9t39EstuF4Vpv8U1umDXn9gIKwrjw3Z8Hslh1wpITuW9syGaL5-1-jftCryAvRsMtVPz1zmo8cLfd35w94jBf3qWt90tfz7gW_CGYUv</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Li, K. Y</creator><creator>Liu, C. C</creator><creator>Ni, Q</creator><creator>Liu, Z. F</creator><creator>Huang, F. Y. C</creator><creator>Colapret, J. A</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19950601</creationdate><title>Kinetic Study of UV Peroxidation of Bis(2-chloroethyl) Ether in Aqueous Solution</title><author>Li, K. Y ; Liu, C. C ; Ni, Q ; Liu, Z. F ; Huang, F. Y. C ; Colapret, J. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a356t-aa029aa8301476256f4d16c26550a5ced5cca8cea6559a404cff76eeccf2456b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>AIR FLOW</topic><topic>Applied sciences</topic><topic>AQUIFERS</topic><topic>CHEMICAL PLANTS</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>ETHERS</topic><topic>Exact sciences and technology</topic><topic>FLOW RATE</topic><topic>GROUND WATER</topic><topic>Groundwaters</topic><topic>HYDROGEN PEROXIDE</topic><topic>Natural water pollution</topic><topic>OXIDATION</topic><topic>PHOTOLYSIS</topic><topic>Pollution</topic><topic>REACTION INTERMEDIATES</topic><topic>REMEDIAL ACTION</topic><topic>SANITARY LANDFILLS</topic><topic>ULTRAVIOLET RADIATION</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, K. Y</creatorcontrib><creatorcontrib>Liu, C. C</creatorcontrib><creatorcontrib>Ni, Q</creatorcontrib><creatorcontrib>Liu, Z. F</creatorcontrib><creatorcontrib>Huang, F. Y. C</creatorcontrib><creatorcontrib>Colapret, J. A</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, K. Y</au><au>Liu, C. C</au><au>Ni, Q</au><au>Liu, Z. F</au><au>Huang, F. Y. C</au><au>Colapret, J. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Study of UV Peroxidation of Bis(2-chloroethyl) Ether in Aqueous Solution</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1995-06-01</date><risdate>1995</risdate><volume>34</volume><issue>6</issue><spage>1960</spage><epage>1968</epage><pages>1960-1968</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>The groundwater aquifer underneath a chemical manufacturing plant in Southeast Texas has been contaminated by the leachate from its landfill. Based on computer simulations, the current air flow rate used in the air-stripping unit is about 10 times higher than the calculated flow rate if bis(2-chloroethyl) ether (DCEE) is excluded. This excessive air flow rate has caused maintenance problems and a higher energy consumption. It was proposed to treat the contaminated groundwater by air stripping to remove the volatile compounds and by UV/H{sub 2}O{sub 2} oxidation to destruct the low-volatility compounds such as DCEE. Experimental data from the UV peroxidation of DCEE in aqueous solution indicated the rate equation is 0.163[DCEE]{sup 0.61}[H{sub 2}O{sub 2}]{sup 0.54}. Important intermediates identified are 2-chloroethyl acetate, an enolic tautomer of 2-chloroethyl acetate, 2-chloroethoxyethene, 2-chloroethanol, acetaldehyde, ethylene oxide, and chloroethene. All the intermediates could be reduced to undetectable levels after 30 min of irradiation when DCEE/H{sub 2}O{sub 2} initial ratio of 1/10 was used. A reaction mechanism with complex pathways through both the attack of hydroxy free radical and the direct photolysis on DCEE was proposed. Intermediate identification and the rate equation suggested that the pathways in which DCEE is attacked by hydroxy free radicals are predominant. The rate equation derived from this mechanism predicted the peroxidation of DCEE is half-order with respect to both DCEE and H{sub 2}O{sub 2} concentrations.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie00045a005</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 1995-06, Vol.34 (6), p.1960-1968 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ie00045a005 |
source | ACS Publications |
subjects | AIR FLOW Applied sciences AQUIFERS CHEMICAL PLANTS CHEMICAL REACTION KINETICS ENVIRONMENTAL SCIENCES ETHERS Exact sciences and technology FLOW RATE GROUND WATER Groundwaters HYDROGEN PEROXIDE Natural water pollution OXIDATION PHOTOLYSIS Pollution REACTION INTERMEDIATES REMEDIAL ACTION SANITARY LANDFILLS ULTRAVIOLET RADIATION Water treatment and pollution |
title | Kinetic Study of UV Peroxidation of Bis(2-chloroethyl) Ether in Aqueous Solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Study%20of%20UV%20Peroxidation%20of%20Bis(2-chloroethyl)%20Ether%20in%20Aqueous%20Solution&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Li,%20K.%20Y&rft.date=1995-06-01&rft.volume=34&rft.issue=6&rft.spage=1960&rft.epage=1968&rft.pages=1960-1968&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie00045a005&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_XZ043CVB_G%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |