Biomass pyrolysis with an entrained flow reactor

A tubular entrained flow reactor has been used to study the effect of process variables on biomass pyrolysis. In this type of reactor, finely ground biomass particles are entrained by carrier gas and transported through a reactor tube which is heated to about 900/sup 0/C. Biomass particles pyrolyze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ind. Eng. Chem. Process Des. Dev.; (United States) 1984-04, Vol.23 (2), p.355-363
Hauptverfasser: Bohn, Mark S, Benham, Charles B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 2
container_start_page 355
container_title Ind. Eng. Chem. Process Des. Dev.; (United States)
container_volume 23
creator Bohn, Mark S
Benham, Charles B
description A tubular entrained flow reactor has been used to study the effect of process variables on biomass pyrolysis. In this type of reactor, finely ground biomass particles are entrained by carrier gas and transported through a reactor tube which is heated to about 900/sup 0/C. Biomass particles pyrolyze as a result of heat transfer from the reactor wall yielding a gas composed primarily of carbon monoxide, carbon dioxide, hydrogen, methane, and unsaturated hydrocarbons. In this experimental program three dependent variables, percent conversion to gas, gas composition, and process heat, have been measured as a function of several process control variables. These process variables include reactor temperature, carrier gas to biomass flow ratio, reactor residence time, biomass particle size, and reactor Reynolds number. The data allow one to design and predict the performance of large-scale reactors and also elucidate heat transfer mechanisms in biomass pyrolysis.
doi_str_mv 10.1021/i200025a030
format Article
fullrecord <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_i200025a030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_814GS10B_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-b9bd3024f1994a8ce366313a3b0a175f57ed61aefacf02ea110c465cb77abf5d3</originalsourceid><addsrcrecordid>eNpt0M1KAzEUBeAgCtbqyhcY3LiQ0XsnP9NZ2qJVKCi0rsOdTEJT25mSRGrf3pGKuHB1Nh8HzmHsEuEWocA7XwBAIQk4HLEBSoG5LFEdswFgpXLBQZ6ysxhXAKgUqgGDse82FGO23YduvY8-Zjuflhm1mW1TIN_aJnPrbpcFSyZ14ZydOFpHe_GTQ_b2-LCYPOWzl-nz5H6WE1ci5XVVNxwK4bCqBI2M5Upx5MRrICylk6VtFJJ1ZBwUlhDBCCVNXZZUO9nwIbs69HYxeR2NT9YsTde21iSthBQViB7dHJAJXYzBOr0NfkNhrxH09yP6zyO9zg_ax2Q_fymFd61KXkq9eJ3rEYrpHGGssffXB08m6lX3Edp-8L_NX37cbVk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Biomass pyrolysis with an entrained flow reactor</title><source>ACS Publications</source><creator>Bohn, Mark S ; Benham, Charles B</creator><creatorcontrib>Bohn, Mark S ; Benham, Charles B ; Solar Energy Research Inst., Golden, CO</creatorcontrib><description>A tubular entrained flow reactor has been used to study the effect of process variables on biomass pyrolysis. In this type of reactor, finely ground biomass particles are entrained by carrier gas and transported through a reactor tube which is heated to about 900/sup 0/C. Biomass particles pyrolyze as a result of heat transfer from the reactor wall yielding a gas composed primarily of carbon monoxide, carbon dioxide, hydrogen, methane, and unsaturated hydrocarbons. In this experimental program three dependent variables, percent conversion to gas, gas composition, and process heat, have been measured as a function of several process control variables. These process variables include reactor temperature, carrier gas to biomass flow ratio, reactor residence time, biomass particle size, and reactor Reynolds number. The data allow one to design and predict the performance of large-scale reactors and also elucidate heat transfer mechanisms in biomass pyrolysis.</description><identifier>ISSN: 0196-4305</identifier><identifier>EISSN: 1541-5716</identifier><identifier>DOI: 10.1021/i200025a030</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>09 BIOMASS FUELS ; 090122 - Hydrocarbon Fuels- Preparation from Wastes or Biomass- (1976-1989) ; 140504 - Solar Energy Conversion- Biomass Production &amp; Conversion- (-1989) ; BIOMASS ; CHEMICAL REACTIONS ; CHEMICAL REACTORS ; DECOMPOSITION ; ENERGY ; ENERGY SOURCES ; ENERGY TRANSFER ; FLOW RATE ; FLUID FLOW ; FLUIDS ; HEAT ; HEAT TRANSFER ; HEAT TRANSFER FLUIDS ; PARAMETRIC ANALYSIS ; PARTICLE SIZE ; PROCESS HEAT ; PYROLYSIS ; PYROLYSIS PRODUCTS ; RENEWABLE ENERGY SOURCES ; RESOLUTION ; REYNOLDS NUMBER ; SIZE ; THERMOCHEMICAL PROCESSES ; TIME RESOLUTION ; TIMING PROPERTIES ; VERY HIGH TEMPERATURE</subject><ispartof>Ind. Eng. Chem. Process Des. Dev.; (United States), 1984-04, Vol.23 (2), p.355-363</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-b9bd3024f1994a8ce366313a3b0a175f57ed61aefacf02ea110c465cb77abf5d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/i200025a030$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/i200025a030$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6454904$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohn, Mark S</creatorcontrib><creatorcontrib>Benham, Charles B</creatorcontrib><creatorcontrib>Solar Energy Research Inst., Golden, CO</creatorcontrib><title>Biomass pyrolysis with an entrained flow reactor</title><title>Ind. Eng. Chem. Process Des. Dev.; (United States)</title><addtitle>Ind. Eng. Chem. Process Des. Dev</addtitle><description>A tubular entrained flow reactor has been used to study the effect of process variables on biomass pyrolysis. In this type of reactor, finely ground biomass particles are entrained by carrier gas and transported through a reactor tube which is heated to about 900/sup 0/C. Biomass particles pyrolyze as a result of heat transfer from the reactor wall yielding a gas composed primarily of carbon monoxide, carbon dioxide, hydrogen, methane, and unsaturated hydrocarbons. In this experimental program three dependent variables, percent conversion to gas, gas composition, and process heat, have been measured as a function of several process control variables. These process variables include reactor temperature, carrier gas to biomass flow ratio, reactor residence time, biomass particle size, and reactor Reynolds number. The data allow one to design and predict the performance of large-scale reactors and also elucidate heat transfer mechanisms in biomass pyrolysis.</description><subject>09 BIOMASS FUELS</subject><subject>090122 - Hydrocarbon Fuels- Preparation from Wastes or Biomass- (1976-1989)</subject><subject>140504 - Solar Energy Conversion- Biomass Production &amp; Conversion- (-1989)</subject><subject>BIOMASS</subject><subject>CHEMICAL REACTIONS</subject><subject>CHEMICAL REACTORS</subject><subject>DECOMPOSITION</subject><subject>ENERGY</subject><subject>ENERGY SOURCES</subject><subject>ENERGY TRANSFER</subject><subject>FLOW RATE</subject><subject>FLUID FLOW</subject><subject>FLUIDS</subject><subject>HEAT</subject><subject>HEAT TRANSFER</subject><subject>HEAT TRANSFER FLUIDS</subject><subject>PARAMETRIC ANALYSIS</subject><subject>PARTICLE SIZE</subject><subject>PROCESS HEAT</subject><subject>PYROLYSIS</subject><subject>PYROLYSIS PRODUCTS</subject><subject>RENEWABLE ENERGY SOURCES</subject><subject>RESOLUTION</subject><subject>REYNOLDS NUMBER</subject><subject>SIZE</subject><subject>THERMOCHEMICAL PROCESSES</subject><subject>TIME RESOLUTION</subject><subject>TIMING PROPERTIES</subject><subject>VERY HIGH TEMPERATURE</subject><issn>0196-4305</issn><issn>1541-5716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNpt0M1KAzEUBeAgCtbqyhcY3LiQ0XsnP9NZ2qJVKCi0rsOdTEJT25mSRGrf3pGKuHB1Nh8HzmHsEuEWocA7XwBAIQk4HLEBSoG5LFEdswFgpXLBQZ6ysxhXAKgUqgGDse82FGO23YduvY8-Zjuflhm1mW1TIN_aJnPrbpcFSyZ14ZydOFpHe_GTQ_b2-LCYPOWzl-nz5H6WE1ci5XVVNxwK4bCqBI2M5Upx5MRrICylk6VtFJJ1ZBwUlhDBCCVNXZZUO9nwIbs69HYxeR2NT9YsTde21iSthBQViB7dHJAJXYzBOr0NfkNhrxH09yP6zyO9zg_ax2Q_fymFd61KXkq9eJ3rEYrpHGGssffXB08m6lX3Edp-8L_NX37cbVk</recordid><startdate>19840401</startdate><enddate>19840401</enddate><creator>Bohn, Mark S</creator><creator>Benham, Charles B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19840401</creationdate><title>Biomass pyrolysis with an entrained flow reactor</title><author>Bohn, Mark S ; Benham, Charles B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-b9bd3024f1994a8ce366313a3b0a175f57ed61aefacf02ea110c465cb77abf5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>09 BIOMASS FUELS</topic><topic>090122 - Hydrocarbon Fuels- Preparation from Wastes or Biomass- (1976-1989)</topic><topic>140504 - Solar Energy Conversion- Biomass Production &amp; Conversion- (-1989)</topic><topic>BIOMASS</topic><topic>CHEMICAL REACTIONS</topic><topic>CHEMICAL REACTORS</topic><topic>DECOMPOSITION</topic><topic>ENERGY</topic><topic>ENERGY SOURCES</topic><topic>ENERGY TRANSFER</topic><topic>FLOW RATE</topic><topic>FLUID FLOW</topic><topic>FLUIDS</topic><topic>HEAT</topic><topic>HEAT TRANSFER</topic><topic>HEAT TRANSFER FLUIDS</topic><topic>PARAMETRIC ANALYSIS</topic><topic>PARTICLE SIZE</topic><topic>PROCESS HEAT</topic><topic>PYROLYSIS</topic><topic>PYROLYSIS PRODUCTS</topic><topic>RENEWABLE ENERGY SOURCES</topic><topic>RESOLUTION</topic><topic>REYNOLDS NUMBER</topic><topic>SIZE</topic><topic>THERMOCHEMICAL PROCESSES</topic><topic>TIME RESOLUTION</topic><topic>TIMING PROPERTIES</topic><topic>VERY HIGH TEMPERATURE</topic><toplevel>online_resources</toplevel><creatorcontrib>Bohn, Mark S</creatorcontrib><creatorcontrib>Benham, Charles B</creatorcontrib><creatorcontrib>Solar Energy Research Inst., Golden, CO</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Ind. Eng. Chem. Process Des. Dev.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohn, Mark S</au><au>Benham, Charles B</au><aucorp>Solar Energy Research Inst., Golden, CO</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomass pyrolysis with an entrained flow reactor</atitle><jtitle>Ind. Eng. Chem. Process Des. Dev.; (United States)</jtitle><addtitle>Ind. Eng. Chem. Process Des. Dev</addtitle><date>1984-04-01</date><risdate>1984</risdate><volume>23</volume><issue>2</issue><spage>355</spage><epage>363</epage><pages>355-363</pages><issn>0196-4305</issn><eissn>1541-5716</eissn><abstract>A tubular entrained flow reactor has been used to study the effect of process variables on biomass pyrolysis. In this type of reactor, finely ground biomass particles are entrained by carrier gas and transported through a reactor tube which is heated to about 900/sup 0/C. Biomass particles pyrolyze as a result of heat transfer from the reactor wall yielding a gas composed primarily of carbon monoxide, carbon dioxide, hydrogen, methane, and unsaturated hydrocarbons. In this experimental program three dependent variables, percent conversion to gas, gas composition, and process heat, have been measured as a function of several process control variables. These process variables include reactor temperature, carrier gas to biomass flow ratio, reactor residence time, biomass particle size, and reactor Reynolds number. The data allow one to design and predict the performance of large-scale reactors and also elucidate heat transfer mechanisms in biomass pyrolysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/i200025a030</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-4305
ispartof Ind. Eng. Chem. Process Des. Dev.; (United States), 1984-04, Vol.23 (2), p.355-363
issn 0196-4305
1541-5716
language eng
recordid cdi_crossref_primary_10_1021_i200025a030
source ACS Publications
subjects 09 BIOMASS FUELS
090122 - Hydrocarbon Fuels- Preparation from Wastes or Biomass- (1976-1989)
140504 - Solar Energy Conversion- Biomass Production & Conversion- (-1989)
BIOMASS
CHEMICAL REACTIONS
CHEMICAL REACTORS
DECOMPOSITION
ENERGY
ENERGY SOURCES
ENERGY TRANSFER
FLOW RATE
FLUID FLOW
FLUIDS
HEAT
HEAT TRANSFER
HEAT TRANSFER FLUIDS
PARAMETRIC ANALYSIS
PARTICLE SIZE
PROCESS HEAT
PYROLYSIS
PYROLYSIS PRODUCTS
RENEWABLE ENERGY SOURCES
RESOLUTION
REYNOLDS NUMBER
SIZE
THERMOCHEMICAL PROCESSES
TIME RESOLUTION
TIMING PROPERTIES
VERY HIGH TEMPERATURE
title Biomass pyrolysis with an entrained flow reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomass%20pyrolysis%20with%20an%20entrained%20flow%20reactor&rft.jtitle=Ind.%20Eng.%20Chem.%20Process%20Des.%20Dev.;%20(United%20States)&rft.au=Bohn,%20Mark%20S&rft.aucorp=Solar%20Energy%20Research%20Inst.,%20Golden,%20CO&rft.date=1984-04-01&rft.volume=23&rft.issue=2&rft.spage=355&rft.epage=363&rft.pages=355-363&rft.issn=0196-4305&rft.eissn=1541-5716&rft_id=info:doi/10.1021/i200025a030&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_814GS10B_1%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true