Biomass pyrolysis with an entrained flow reactor
A tubular entrained flow reactor has been used to study the effect of process variables on biomass pyrolysis. In this type of reactor, finely ground biomass particles are entrained by carrier gas and transported through a reactor tube which is heated to about 900/sup 0/C. Biomass particles pyrolyze...
Gespeichert in:
Veröffentlicht in: | Ind. Eng. Chem. Process Des. Dev.; (United States) 1984-04, Vol.23 (2), p.355-363 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 363 |
---|---|
container_issue | 2 |
container_start_page | 355 |
container_title | Ind. Eng. Chem. Process Des. Dev.; (United States) |
container_volume | 23 |
creator | Bohn, Mark S Benham, Charles B |
description | A tubular entrained flow reactor has been used to study the effect of process variables on biomass pyrolysis. In this type of reactor, finely ground biomass particles are entrained by carrier gas and transported through a reactor tube which is heated to about 900/sup 0/C. Biomass particles pyrolyze as a result of heat transfer from the reactor wall yielding a gas composed primarily of carbon monoxide, carbon dioxide, hydrogen, methane, and unsaturated hydrocarbons. In this experimental program three dependent variables, percent conversion to gas, gas composition, and process heat, have been measured as a function of several process control variables. These process variables include reactor temperature, carrier gas to biomass flow ratio, reactor residence time, biomass particle size, and reactor Reynolds number. The data allow one to design and predict the performance of large-scale reactors and also elucidate heat transfer mechanisms in biomass pyrolysis. |
doi_str_mv | 10.1021/i200025a030 |
format | Article |
fullrecord | <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_i200025a030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_814GS10B_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-b9bd3024f1994a8ce366313a3b0a175f57ed61aefacf02ea110c465cb77abf5d3</originalsourceid><addsrcrecordid>eNpt0M1KAzEUBeAgCtbqyhcY3LiQ0XsnP9NZ2qJVKCi0rsOdTEJT25mSRGrf3pGKuHB1Nh8HzmHsEuEWocA7XwBAIQk4HLEBSoG5LFEdswFgpXLBQZ6ysxhXAKgUqgGDse82FGO23YduvY8-Zjuflhm1mW1TIN_aJnPrbpcFSyZ14ZydOFpHe_GTQ_b2-LCYPOWzl-nz5H6WE1ci5XVVNxwK4bCqBI2M5Upx5MRrICylk6VtFJJ1ZBwUlhDBCCVNXZZUO9nwIbs69HYxeR2NT9YsTde21iSthBQViB7dHJAJXYzBOr0NfkNhrxH09yP6zyO9zg_ax2Q_fymFd61KXkq9eJ3rEYrpHGGssffXB08m6lX3Edp-8L_NX37cbVk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Biomass pyrolysis with an entrained flow reactor</title><source>ACS Publications</source><creator>Bohn, Mark S ; Benham, Charles B</creator><creatorcontrib>Bohn, Mark S ; Benham, Charles B ; Solar Energy Research Inst., Golden, CO</creatorcontrib><description>A tubular entrained flow reactor has been used to study the effect of process variables on biomass pyrolysis. In this type of reactor, finely ground biomass particles are entrained by carrier gas and transported through a reactor tube which is heated to about 900/sup 0/C. Biomass particles pyrolyze as a result of heat transfer from the reactor wall yielding a gas composed primarily of carbon monoxide, carbon dioxide, hydrogen, methane, and unsaturated hydrocarbons. In this experimental program three dependent variables, percent conversion to gas, gas composition, and process heat, have been measured as a function of several process control variables. These process variables include reactor temperature, carrier gas to biomass flow ratio, reactor residence time, biomass particle size, and reactor Reynolds number. The data allow one to design and predict the performance of large-scale reactors and also elucidate heat transfer mechanisms in biomass pyrolysis.</description><identifier>ISSN: 0196-4305</identifier><identifier>EISSN: 1541-5716</identifier><identifier>DOI: 10.1021/i200025a030</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>09 BIOMASS FUELS ; 090122 - Hydrocarbon Fuels- Preparation from Wastes or Biomass- (1976-1989) ; 140504 - Solar Energy Conversion- Biomass Production & Conversion- (-1989) ; BIOMASS ; CHEMICAL REACTIONS ; CHEMICAL REACTORS ; DECOMPOSITION ; ENERGY ; ENERGY SOURCES ; ENERGY TRANSFER ; FLOW RATE ; FLUID FLOW ; FLUIDS ; HEAT ; HEAT TRANSFER ; HEAT TRANSFER FLUIDS ; PARAMETRIC ANALYSIS ; PARTICLE SIZE ; PROCESS HEAT ; PYROLYSIS ; PYROLYSIS PRODUCTS ; RENEWABLE ENERGY SOURCES ; RESOLUTION ; REYNOLDS NUMBER ; SIZE ; THERMOCHEMICAL PROCESSES ; TIME RESOLUTION ; TIMING PROPERTIES ; VERY HIGH TEMPERATURE</subject><ispartof>Ind. Eng. Chem. Process Des. Dev.; (United States), 1984-04, Vol.23 (2), p.355-363</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-b9bd3024f1994a8ce366313a3b0a175f57ed61aefacf02ea110c465cb77abf5d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/i200025a030$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/i200025a030$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6454904$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohn, Mark S</creatorcontrib><creatorcontrib>Benham, Charles B</creatorcontrib><creatorcontrib>Solar Energy Research Inst., Golden, CO</creatorcontrib><title>Biomass pyrolysis with an entrained flow reactor</title><title>Ind. Eng. Chem. Process Des. Dev.; (United States)</title><addtitle>Ind. Eng. Chem. Process Des. Dev</addtitle><description>A tubular entrained flow reactor has been used to study the effect of process variables on biomass pyrolysis. In this type of reactor, finely ground biomass particles are entrained by carrier gas and transported through a reactor tube which is heated to about 900/sup 0/C. Biomass particles pyrolyze as a result of heat transfer from the reactor wall yielding a gas composed primarily of carbon monoxide, carbon dioxide, hydrogen, methane, and unsaturated hydrocarbons. In this experimental program three dependent variables, percent conversion to gas, gas composition, and process heat, have been measured as a function of several process control variables. These process variables include reactor temperature, carrier gas to biomass flow ratio, reactor residence time, biomass particle size, and reactor Reynolds number. The data allow one to design and predict the performance of large-scale reactors and also elucidate heat transfer mechanisms in biomass pyrolysis.</description><subject>09 BIOMASS FUELS</subject><subject>090122 - Hydrocarbon Fuels- Preparation from Wastes or Biomass- (1976-1989)</subject><subject>140504 - Solar Energy Conversion- Biomass Production & Conversion- (-1989)</subject><subject>BIOMASS</subject><subject>CHEMICAL REACTIONS</subject><subject>CHEMICAL REACTORS</subject><subject>DECOMPOSITION</subject><subject>ENERGY</subject><subject>ENERGY SOURCES</subject><subject>ENERGY TRANSFER</subject><subject>FLOW RATE</subject><subject>FLUID FLOW</subject><subject>FLUIDS</subject><subject>HEAT</subject><subject>HEAT TRANSFER</subject><subject>HEAT TRANSFER FLUIDS</subject><subject>PARAMETRIC ANALYSIS</subject><subject>PARTICLE SIZE</subject><subject>PROCESS HEAT</subject><subject>PYROLYSIS</subject><subject>PYROLYSIS PRODUCTS</subject><subject>RENEWABLE ENERGY SOURCES</subject><subject>RESOLUTION</subject><subject>REYNOLDS NUMBER</subject><subject>SIZE</subject><subject>THERMOCHEMICAL PROCESSES</subject><subject>TIME RESOLUTION</subject><subject>TIMING PROPERTIES</subject><subject>VERY HIGH TEMPERATURE</subject><issn>0196-4305</issn><issn>1541-5716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNpt0M1KAzEUBeAgCtbqyhcY3LiQ0XsnP9NZ2qJVKCi0rsOdTEJT25mSRGrf3pGKuHB1Nh8HzmHsEuEWocA7XwBAIQk4HLEBSoG5LFEdswFgpXLBQZ6ysxhXAKgUqgGDse82FGO23YduvY8-Zjuflhm1mW1TIN_aJnPrbpcFSyZ14ZydOFpHe_GTQ_b2-LCYPOWzl-nz5H6WE1ci5XVVNxwK4bCqBI2M5Upx5MRrICylk6VtFJJ1ZBwUlhDBCCVNXZZUO9nwIbs69HYxeR2NT9YsTde21iSthBQViB7dHJAJXYzBOr0NfkNhrxH09yP6zyO9zg_ax2Q_fymFd61KXkq9eJ3rEYrpHGGssffXB08m6lX3Edp-8L_NX37cbVk</recordid><startdate>19840401</startdate><enddate>19840401</enddate><creator>Bohn, Mark S</creator><creator>Benham, Charles B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19840401</creationdate><title>Biomass pyrolysis with an entrained flow reactor</title><author>Bohn, Mark S ; Benham, Charles B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-b9bd3024f1994a8ce366313a3b0a175f57ed61aefacf02ea110c465cb77abf5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>09 BIOMASS FUELS</topic><topic>090122 - Hydrocarbon Fuels- Preparation from Wastes or Biomass- (1976-1989)</topic><topic>140504 - Solar Energy Conversion- Biomass Production & Conversion- (-1989)</topic><topic>BIOMASS</topic><topic>CHEMICAL REACTIONS</topic><topic>CHEMICAL REACTORS</topic><topic>DECOMPOSITION</topic><topic>ENERGY</topic><topic>ENERGY SOURCES</topic><topic>ENERGY TRANSFER</topic><topic>FLOW RATE</topic><topic>FLUID FLOW</topic><topic>FLUIDS</topic><topic>HEAT</topic><topic>HEAT TRANSFER</topic><topic>HEAT TRANSFER FLUIDS</topic><topic>PARAMETRIC ANALYSIS</topic><topic>PARTICLE SIZE</topic><topic>PROCESS HEAT</topic><topic>PYROLYSIS</topic><topic>PYROLYSIS PRODUCTS</topic><topic>RENEWABLE ENERGY SOURCES</topic><topic>RESOLUTION</topic><topic>REYNOLDS NUMBER</topic><topic>SIZE</topic><topic>THERMOCHEMICAL PROCESSES</topic><topic>TIME RESOLUTION</topic><topic>TIMING PROPERTIES</topic><topic>VERY HIGH TEMPERATURE</topic><toplevel>online_resources</toplevel><creatorcontrib>Bohn, Mark S</creatorcontrib><creatorcontrib>Benham, Charles B</creatorcontrib><creatorcontrib>Solar Energy Research Inst., Golden, CO</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Ind. Eng. Chem. Process Des. Dev.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohn, Mark S</au><au>Benham, Charles B</au><aucorp>Solar Energy Research Inst., Golden, CO</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomass pyrolysis with an entrained flow reactor</atitle><jtitle>Ind. Eng. Chem. Process Des. Dev.; (United States)</jtitle><addtitle>Ind. Eng. Chem. Process Des. Dev</addtitle><date>1984-04-01</date><risdate>1984</risdate><volume>23</volume><issue>2</issue><spage>355</spage><epage>363</epage><pages>355-363</pages><issn>0196-4305</issn><eissn>1541-5716</eissn><abstract>A tubular entrained flow reactor has been used to study the effect of process variables on biomass pyrolysis. In this type of reactor, finely ground biomass particles are entrained by carrier gas and transported through a reactor tube which is heated to about 900/sup 0/C. Biomass particles pyrolyze as a result of heat transfer from the reactor wall yielding a gas composed primarily of carbon monoxide, carbon dioxide, hydrogen, methane, and unsaturated hydrocarbons. In this experimental program three dependent variables, percent conversion to gas, gas composition, and process heat, have been measured as a function of several process control variables. These process variables include reactor temperature, carrier gas to biomass flow ratio, reactor residence time, biomass particle size, and reactor Reynolds number. The data allow one to design and predict the performance of large-scale reactors and also elucidate heat transfer mechanisms in biomass pyrolysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/i200025a030</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-4305 |
ispartof | Ind. Eng. Chem. Process Des. Dev.; (United States), 1984-04, Vol.23 (2), p.355-363 |
issn | 0196-4305 1541-5716 |
language | eng |
recordid | cdi_crossref_primary_10_1021_i200025a030 |
source | ACS Publications |
subjects | 09 BIOMASS FUELS 090122 - Hydrocarbon Fuels- Preparation from Wastes or Biomass- (1976-1989) 140504 - Solar Energy Conversion- Biomass Production & Conversion- (-1989) BIOMASS CHEMICAL REACTIONS CHEMICAL REACTORS DECOMPOSITION ENERGY ENERGY SOURCES ENERGY TRANSFER FLOW RATE FLUID FLOW FLUIDS HEAT HEAT TRANSFER HEAT TRANSFER FLUIDS PARAMETRIC ANALYSIS PARTICLE SIZE PROCESS HEAT PYROLYSIS PYROLYSIS PRODUCTS RENEWABLE ENERGY SOURCES RESOLUTION REYNOLDS NUMBER SIZE THERMOCHEMICAL PROCESSES TIME RESOLUTION TIMING PROPERTIES VERY HIGH TEMPERATURE |
title | Biomass pyrolysis with an entrained flow reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomass%20pyrolysis%20with%20an%20entrained%20flow%20reactor&rft.jtitle=Ind.%20Eng.%20Chem.%20Process%20Des.%20Dev.;%20(United%20States)&rft.au=Bohn,%20Mark%20S&rft.aucorp=Solar%20Energy%20Research%20Inst.,%20Golden,%20CO&rft.date=1984-04-01&rft.volume=23&rft.issue=2&rft.spage=355&rft.epage=363&rft.pages=355-363&rft.issn=0196-4305&rft.eissn=1541-5716&rft_id=info:doi/10.1021/i200025a030&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_814GS10B_1%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |