Thermodynamic model for solvating solutions with physical interactions

A method for the correlation of phase equilibrium data for solvating, multicomponent liquid solutions is proposed. Chemical equilibrium constants are used to calculate the extent of formation of discrete solvation complexes, and the UNIFAC group-contribution theory is used to predict the physical in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ind. Eng. Chem. Process Des. Dev.; (United States) 1982-07, Vol.21 (3), p.409-415
Hauptverfasser: Spala, Eugene E, Ricker, Neil L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415
container_issue 3
container_start_page 409
container_title Ind. Eng. Chem. Process Des. Dev.; (United States)
container_volume 21
creator Spala, Eugene E
Ricker, Neil L
description A method for the correlation of phase equilibrium data for solvating, multicomponent liquid solutions is proposed. Chemical equilibrium constants are used to calculate the extent of formation of discrete solvation complexes, and the UNIFAC group-contribution theory is used to predict the physical interactions between species in solution. The method is applied to example binary and multicomponent solvating systems including a quaternary trioctylamine/acetic acid/solvent/water system from a developmental liquid extraction process that exhibit unusually complex phase equilibria. The proposed method gives a much better representation of such systems than has been reported previously. Potential shortcomings of the approach are also discussed.
doi_str_mv 10.1021/i200018a011
format Article
fullrecord <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_i200018a011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_X80T74MX_F</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-7693713f2a1384f8d0fce5c6df9f94e01a8a4b1c2eff1357c481b22cec08b5483</originalsourceid><addsrcrecordid>eNpt0E1LAzEQBuAgCtbqyT-wePEgq5l8bfYoxapQUXCF3kKaJm5qu1uSVO2_d-uKePA0L8zDCzMInQK-BEzgyhOMMUiNAfbQADiDnBcg9tEAQylyRjE_REcxLjolBIgBGle1Dat2vm30ypusS3aZuTZksV2-6-Sb113aJN82Mfvwqc7W9TZ6o5eZb5IN2nyvjtGB08toT37mEL2Mb6rRXT55vL0fXU9yTQVLeSFKWgB1RAOVzMk5dsZyI-audCWzGLTUbAaGWOeA8sIwCTNCjDVYzjiTdIjO-t42Jq-i8cma2rRNY01SXAoiCenQRY9MaGMM1ql18Csdtgqw2v1J_flTp_Ne-5js5y_V4U2JghZcVU_PaipxVbCHqRp3_rz32kS1aDeh6Q7-t_kLFM92Zw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamic model for solvating solutions with physical interactions</title><source>ACS Publications</source><creator>Spala, Eugene E ; Ricker, Neil L</creator><creatorcontrib>Spala, Eugene E ; Ricker, Neil L ; Department of Chemical Engineering, University of Washington, Seattle, Washington 98195</creatorcontrib><description>A method for the correlation of phase equilibrium data for solvating, multicomponent liquid solutions is proposed. Chemical equilibrium constants are used to calculate the extent of formation of discrete solvation complexes, and the UNIFAC group-contribution theory is used to predict the physical interactions between species in solution. The method is applied to example binary and multicomponent solvating systems including a quaternary trioctylamine/acetic acid/solvent/water system from a developmental liquid extraction process that exhibit unusually complex phase equilibria. The proposed method gives a much better representation of such systems than has been reported previously. Potential shortcomings of the approach are also discussed.</description><identifier>ISSN: 0196-4305</identifier><identifier>EISSN: 1541-5716</identifier><identifier>DOI: 10.1021/i200018a011</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>400105 - Separation Procedures ; ACETIC ACID ; AMINES ; CARBOXYLIC ACIDS ; CHELATING AGENTS ; CORRELATIONS ; DATA ; DATA ANALYSIS ; DISPERSIONS ; EQUILIBRIUM ; EVALUATED DATA ; EXTRACTION ; HYDROGEN COMPOUNDS ; INFORMATION ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MIXTURES ; MONOCARBOXYLIC ACIDS ; MULTIGROUP THEORY ; NEUTRON TRANSPORT THEORY ; NUMERICAL DATA ; ORGANIC ACIDS ; ORGANIC COMPOUNDS ; OXYGEN COMPOUNDS ; PHASE STABILITY ; SEPARATION PROCESSES ; SIMULATION ; SOLUTIONS ; SOLVATION ; SOLVENT EXTRACTION ; STABILITY ; TOA ; TRANSPORT THEORY ; WATER</subject><ispartof>Ind. Eng. Chem. Process Des. Dev.; (United States), 1982-07, Vol.21 (3), p.409-415</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-7693713f2a1384f8d0fce5c6df9f94e01a8a4b1c2eff1357c481b22cec08b5483</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/i200018a011$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/i200018a011$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5862822$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Spala, Eugene E</creatorcontrib><creatorcontrib>Ricker, Neil L</creatorcontrib><creatorcontrib>Department of Chemical Engineering, University of Washington, Seattle, Washington 98195</creatorcontrib><title>Thermodynamic model for solvating solutions with physical interactions</title><title>Ind. Eng. Chem. Process Des. Dev.; (United States)</title><addtitle>Ind. Eng. Chem. Process Des. Dev</addtitle><description>A method for the correlation of phase equilibrium data for solvating, multicomponent liquid solutions is proposed. Chemical equilibrium constants are used to calculate the extent of formation of discrete solvation complexes, and the UNIFAC group-contribution theory is used to predict the physical interactions between species in solution. The method is applied to example binary and multicomponent solvating systems including a quaternary trioctylamine/acetic acid/solvent/water system from a developmental liquid extraction process that exhibit unusually complex phase equilibria. The proposed method gives a much better representation of such systems than has been reported previously. Potential shortcomings of the approach are also discussed.</description><subject>400105 - Separation Procedures</subject><subject>ACETIC ACID</subject><subject>AMINES</subject><subject>CARBOXYLIC ACIDS</subject><subject>CHELATING AGENTS</subject><subject>CORRELATIONS</subject><subject>DATA</subject><subject>DATA ANALYSIS</subject><subject>DISPERSIONS</subject><subject>EQUILIBRIUM</subject><subject>EVALUATED DATA</subject><subject>EXTRACTION</subject><subject>HYDROGEN COMPOUNDS</subject><subject>INFORMATION</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MIXTURES</subject><subject>MONOCARBOXYLIC ACIDS</subject><subject>MULTIGROUP THEORY</subject><subject>NEUTRON TRANSPORT THEORY</subject><subject>NUMERICAL DATA</subject><subject>ORGANIC ACIDS</subject><subject>ORGANIC COMPOUNDS</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHASE STABILITY</subject><subject>SEPARATION PROCESSES</subject><subject>SIMULATION</subject><subject>SOLUTIONS</subject><subject>SOLVATION</subject><subject>SOLVENT EXTRACTION</subject><subject>STABILITY</subject><subject>TOA</subject><subject>TRANSPORT THEORY</subject><subject>WATER</subject><issn>0196-4305</issn><issn>1541-5716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LAzEQBuAgCtbqyT-wePEgq5l8bfYoxapQUXCF3kKaJm5qu1uSVO2_d-uKePA0L8zDCzMInQK-BEzgyhOMMUiNAfbQADiDnBcg9tEAQylyRjE_REcxLjolBIgBGle1Dat2vm30ypusS3aZuTZksV2-6-Sb113aJN82Mfvwqc7W9TZ6o5eZb5IN2nyvjtGB08toT37mEL2Mb6rRXT55vL0fXU9yTQVLeSFKWgB1RAOVzMk5dsZyI-audCWzGLTUbAaGWOeA8sIwCTNCjDVYzjiTdIjO-t42Jq-i8cma2rRNY01SXAoiCenQRY9MaGMM1ql18Csdtgqw2v1J_flTp_Ne-5js5y_V4U2JghZcVU_PaipxVbCHqRp3_rz32kS1aDeh6Q7-t_kLFM92Zw</recordid><startdate>19820701</startdate><enddate>19820701</enddate><creator>Spala, Eugene E</creator><creator>Ricker, Neil L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19820701</creationdate><title>Thermodynamic model for solvating solutions with physical interactions</title><author>Spala, Eugene E ; Ricker, Neil L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-7693713f2a1384f8d0fce5c6df9f94e01a8a4b1c2eff1357c481b22cec08b5483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>400105 - Separation Procedures</topic><topic>ACETIC ACID</topic><topic>AMINES</topic><topic>CARBOXYLIC ACIDS</topic><topic>CHELATING AGENTS</topic><topic>CORRELATIONS</topic><topic>DATA</topic><topic>DATA ANALYSIS</topic><topic>DISPERSIONS</topic><topic>EQUILIBRIUM</topic><topic>EVALUATED DATA</topic><topic>EXTRACTION</topic><topic>HYDROGEN COMPOUNDS</topic><topic>INFORMATION</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MIXTURES</topic><topic>MONOCARBOXYLIC ACIDS</topic><topic>MULTIGROUP THEORY</topic><topic>NEUTRON TRANSPORT THEORY</topic><topic>NUMERICAL DATA</topic><topic>ORGANIC ACIDS</topic><topic>ORGANIC COMPOUNDS</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHASE STABILITY</topic><topic>SEPARATION PROCESSES</topic><topic>SIMULATION</topic><topic>SOLUTIONS</topic><topic>SOLVATION</topic><topic>SOLVENT EXTRACTION</topic><topic>STABILITY</topic><topic>TOA</topic><topic>TRANSPORT THEORY</topic><topic>WATER</topic><toplevel>online_resources</toplevel><creatorcontrib>Spala, Eugene E</creatorcontrib><creatorcontrib>Ricker, Neil L</creatorcontrib><creatorcontrib>Department of Chemical Engineering, University of Washington, Seattle, Washington 98195</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Ind. Eng. Chem. Process Des. Dev.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spala, Eugene E</au><au>Ricker, Neil L</au><aucorp>Department of Chemical Engineering, University of Washington, Seattle, Washington 98195</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic model for solvating solutions with physical interactions</atitle><jtitle>Ind. Eng. Chem. Process Des. Dev.; (United States)</jtitle><addtitle>Ind. Eng. Chem. Process Des. Dev</addtitle><date>1982-07-01</date><risdate>1982</risdate><volume>21</volume><issue>3</issue><spage>409</spage><epage>415</epage><pages>409-415</pages><issn>0196-4305</issn><eissn>1541-5716</eissn><abstract>A method for the correlation of phase equilibrium data for solvating, multicomponent liquid solutions is proposed. Chemical equilibrium constants are used to calculate the extent of formation of discrete solvation complexes, and the UNIFAC group-contribution theory is used to predict the physical interactions between species in solution. The method is applied to example binary and multicomponent solvating systems including a quaternary trioctylamine/acetic acid/solvent/water system from a developmental liquid extraction process that exhibit unusually complex phase equilibria. The proposed method gives a much better representation of such systems than has been reported previously. Potential shortcomings of the approach are also discussed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/i200018a011</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-4305
ispartof Ind. Eng. Chem. Process Des. Dev.; (United States), 1982-07, Vol.21 (3), p.409-415
issn 0196-4305
1541-5716
language eng
recordid cdi_crossref_primary_10_1021_i200018a011
source ACS Publications
subjects 400105 - Separation Procedures
ACETIC ACID
AMINES
CARBOXYLIC ACIDS
CHELATING AGENTS
CORRELATIONS
DATA
DATA ANALYSIS
DISPERSIONS
EQUILIBRIUM
EVALUATED DATA
EXTRACTION
HYDROGEN COMPOUNDS
INFORMATION
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
MIXTURES
MONOCARBOXYLIC ACIDS
MULTIGROUP THEORY
NEUTRON TRANSPORT THEORY
NUMERICAL DATA
ORGANIC ACIDS
ORGANIC COMPOUNDS
OXYGEN COMPOUNDS
PHASE STABILITY
SEPARATION PROCESSES
SIMULATION
SOLUTIONS
SOLVATION
SOLVENT EXTRACTION
STABILITY
TOA
TRANSPORT THEORY
WATER
title Thermodynamic model for solvating solutions with physical interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20model%20for%20solvating%20solutions%20with%20physical%20interactions&rft.jtitle=Ind.%20Eng.%20Chem.%20Process%20Des.%20Dev.;%20(United%20States)&rft.au=Spala,%20Eugene%20E&rft.aucorp=Department%20of%20Chemical%20Engineering,%20University%20of%20Washington,%20Seattle,%20Washington%2098195&rft.date=1982-07-01&rft.volume=21&rft.issue=3&rft.spage=409&rft.epage=415&rft.pages=409-415&rft.issn=0196-4305&rft.eissn=1541-5716&rft_id=info:doi/10.1021/i200018a011&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_X80T74MX_F%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true