Thermodynamic model for solvating solutions with physical interactions
A method for the correlation of phase equilibrium data for solvating, multicomponent liquid solutions is proposed. Chemical equilibrium constants are used to calculate the extent of formation of discrete solvation complexes, and the UNIFAC group-contribution theory is used to predict the physical in...
Gespeichert in:
Veröffentlicht in: | Ind. Eng. Chem. Process Des. Dev.; (United States) 1982-07, Vol.21 (3), p.409-415 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 415 |
---|---|
container_issue | 3 |
container_start_page | 409 |
container_title | Ind. Eng. Chem. Process Des. Dev.; (United States) |
container_volume | 21 |
creator | Spala, Eugene E Ricker, Neil L |
description | A method for the correlation of phase equilibrium data for solvating, multicomponent liquid solutions is proposed. Chemical equilibrium constants are used to calculate the extent of formation of discrete solvation complexes, and the UNIFAC group-contribution theory is used to predict the physical interactions between species in solution. The method is applied to example binary and multicomponent solvating systems including a quaternary trioctylamine/acetic acid/solvent/water system from a developmental liquid extraction process that exhibit unusually complex phase equilibria. The proposed method gives a much better representation of such systems than has been reported previously. Potential shortcomings of the approach are also discussed. |
doi_str_mv | 10.1021/i200018a011 |
format | Article |
fullrecord | <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_i200018a011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_X80T74MX_F</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-7693713f2a1384f8d0fce5c6df9f94e01a8a4b1c2eff1357c481b22cec08b5483</originalsourceid><addsrcrecordid>eNpt0E1LAzEQBuAgCtbqyT-wePEgq5l8bfYoxapQUXCF3kKaJm5qu1uSVO2_d-uKePA0L8zDCzMInQK-BEzgyhOMMUiNAfbQADiDnBcg9tEAQylyRjE_REcxLjolBIgBGle1Dat2vm30ypusS3aZuTZksV2-6-Sb113aJN82Mfvwqc7W9TZ6o5eZb5IN2nyvjtGB08toT37mEL2Mb6rRXT55vL0fXU9yTQVLeSFKWgB1RAOVzMk5dsZyI-audCWzGLTUbAaGWOeA8sIwCTNCjDVYzjiTdIjO-t42Jq-i8cma2rRNY01SXAoiCenQRY9MaGMM1ql18Csdtgqw2v1J_flTp_Ne-5js5y_V4U2JghZcVU_PaipxVbCHqRp3_rz32kS1aDeh6Q7-t_kLFM92Zw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamic model for solvating solutions with physical interactions</title><source>ACS Publications</source><creator>Spala, Eugene E ; Ricker, Neil L</creator><creatorcontrib>Spala, Eugene E ; Ricker, Neil L ; Department of Chemical Engineering, University of Washington, Seattle, Washington 98195</creatorcontrib><description>A method for the correlation of phase equilibrium data for solvating, multicomponent liquid solutions is proposed. Chemical equilibrium constants are used to calculate the extent of formation of discrete solvation complexes, and the UNIFAC group-contribution theory is used to predict the physical interactions between species in solution. The method is applied to example binary and multicomponent solvating systems including a quaternary trioctylamine/acetic acid/solvent/water system from a developmental liquid extraction process that exhibit unusually complex phase equilibria. The proposed method gives a much better representation of such systems than has been reported previously. Potential shortcomings of the approach are also discussed.</description><identifier>ISSN: 0196-4305</identifier><identifier>EISSN: 1541-5716</identifier><identifier>DOI: 10.1021/i200018a011</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>400105 - Separation Procedures ; ACETIC ACID ; AMINES ; CARBOXYLIC ACIDS ; CHELATING AGENTS ; CORRELATIONS ; DATA ; DATA ANALYSIS ; DISPERSIONS ; EQUILIBRIUM ; EVALUATED DATA ; EXTRACTION ; HYDROGEN COMPOUNDS ; INFORMATION ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MIXTURES ; MONOCARBOXYLIC ACIDS ; MULTIGROUP THEORY ; NEUTRON TRANSPORT THEORY ; NUMERICAL DATA ; ORGANIC ACIDS ; ORGANIC COMPOUNDS ; OXYGEN COMPOUNDS ; PHASE STABILITY ; SEPARATION PROCESSES ; SIMULATION ; SOLUTIONS ; SOLVATION ; SOLVENT EXTRACTION ; STABILITY ; TOA ; TRANSPORT THEORY ; WATER</subject><ispartof>Ind. Eng. Chem. Process Des. Dev.; (United States), 1982-07, Vol.21 (3), p.409-415</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-7693713f2a1384f8d0fce5c6df9f94e01a8a4b1c2eff1357c481b22cec08b5483</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/i200018a011$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/i200018a011$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5862822$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Spala, Eugene E</creatorcontrib><creatorcontrib>Ricker, Neil L</creatorcontrib><creatorcontrib>Department of Chemical Engineering, University of Washington, Seattle, Washington 98195</creatorcontrib><title>Thermodynamic model for solvating solutions with physical interactions</title><title>Ind. Eng. Chem. Process Des. Dev.; (United States)</title><addtitle>Ind. Eng. Chem. Process Des. Dev</addtitle><description>A method for the correlation of phase equilibrium data for solvating, multicomponent liquid solutions is proposed. Chemical equilibrium constants are used to calculate the extent of formation of discrete solvation complexes, and the UNIFAC group-contribution theory is used to predict the physical interactions between species in solution. The method is applied to example binary and multicomponent solvating systems including a quaternary trioctylamine/acetic acid/solvent/water system from a developmental liquid extraction process that exhibit unusually complex phase equilibria. The proposed method gives a much better representation of such systems than has been reported previously. Potential shortcomings of the approach are also discussed.</description><subject>400105 - Separation Procedures</subject><subject>ACETIC ACID</subject><subject>AMINES</subject><subject>CARBOXYLIC ACIDS</subject><subject>CHELATING AGENTS</subject><subject>CORRELATIONS</subject><subject>DATA</subject><subject>DATA ANALYSIS</subject><subject>DISPERSIONS</subject><subject>EQUILIBRIUM</subject><subject>EVALUATED DATA</subject><subject>EXTRACTION</subject><subject>HYDROGEN COMPOUNDS</subject><subject>INFORMATION</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MIXTURES</subject><subject>MONOCARBOXYLIC ACIDS</subject><subject>MULTIGROUP THEORY</subject><subject>NEUTRON TRANSPORT THEORY</subject><subject>NUMERICAL DATA</subject><subject>ORGANIC ACIDS</subject><subject>ORGANIC COMPOUNDS</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHASE STABILITY</subject><subject>SEPARATION PROCESSES</subject><subject>SIMULATION</subject><subject>SOLUTIONS</subject><subject>SOLVATION</subject><subject>SOLVENT EXTRACTION</subject><subject>STABILITY</subject><subject>TOA</subject><subject>TRANSPORT THEORY</subject><subject>WATER</subject><issn>0196-4305</issn><issn>1541-5716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LAzEQBuAgCtbqyT-wePEgq5l8bfYoxapQUXCF3kKaJm5qu1uSVO2_d-uKePA0L8zDCzMInQK-BEzgyhOMMUiNAfbQADiDnBcg9tEAQylyRjE_REcxLjolBIgBGle1Dat2vm30ypusS3aZuTZksV2-6-Sb113aJN82Mfvwqc7W9TZ6o5eZb5IN2nyvjtGB08toT37mEL2Mb6rRXT55vL0fXU9yTQVLeSFKWgB1RAOVzMk5dsZyI-audCWzGLTUbAaGWOeA8sIwCTNCjDVYzjiTdIjO-t42Jq-i8cma2rRNY01SXAoiCenQRY9MaGMM1ql18Csdtgqw2v1J_flTp_Ne-5js5y_V4U2JghZcVU_PaipxVbCHqRp3_rz32kS1aDeh6Q7-t_kLFM92Zw</recordid><startdate>19820701</startdate><enddate>19820701</enddate><creator>Spala, Eugene E</creator><creator>Ricker, Neil L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19820701</creationdate><title>Thermodynamic model for solvating solutions with physical interactions</title><author>Spala, Eugene E ; Ricker, Neil L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-7693713f2a1384f8d0fce5c6df9f94e01a8a4b1c2eff1357c481b22cec08b5483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>400105 - Separation Procedures</topic><topic>ACETIC ACID</topic><topic>AMINES</topic><topic>CARBOXYLIC ACIDS</topic><topic>CHELATING AGENTS</topic><topic>CORRELATIONS</topic><topic>DATA</topic><topic>DATA ANALYSIS</topic><topic>DISPERSIONS</topic><topic>EQUILIBRIUM</topic><topic>EVALUATED DATA</topic><topic>EXTRACTION</topic><topic>HYDROGEN COMPOUNDS</topic><topic>INFORMATION</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MIXTURES</topic><topic>MONOCARBOXYLIC ACIDS</topic><topic>MULTIGROUP THEORY</topic><topic>NEUTRON TRANSPORT THEORY</topic><topic>NUMERICAL DATA</topic><topic>ORGANIC ACIDS</topic><topic>ORGANIC COMPOUNDS</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHASE STABILITY</topic><topic>SEPARATION PROCESSES</topic><topic>SIMULATION</topic><topic>SOLUTIONS</topic><topic>SOLVATION</topic><topic>SOLVENT EXTRACTION</topic><topic>STABILITY</topic><topic>TOA</topic><topic>TRANSPORT THEORY</topic><topic>WATER</topic><toplevel>online_resources</toplevel><creatorcontrib>Spala, Eugene E</creatorcontrib><creatorcontrib>Ricker, Neil L</creatorcontrib><creatorcontrib>Department of Chemical Engineering, University of Washington, Seattle, Washington 98195</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Ind. Eng. Chem. Process Des. Dev.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spala, Eugene E</au><au>Ricker, Neil L</au><aucorp>Department of Chemical Engineering, University of Washington, Seattle, Washington 98195</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic model for solvating solutions with physical interactions</atitle><jtitle>Ind. Eng. Chem. Process Des. Dev.; (United States)</jtitle><addtitle>Ind. Eng. Chem. Process Des. Dev</addtitle><date>1982-07-01</date><risdate>1982</risdate><volume>21</volume><issue>3</issue><spage>409</spage><epage>415</epage><pages>409-415</pages><issn>0196-4305</issn><eissn>1541-5716</eissn><abstract>A method for the correlation of phase equilibrium data for solvating, multicomponent liquid solutions is proposed. Chemical equilibrium constants are used to calculate the extent of formation of discrete solvation complexes, and the UNIFAC group-contribution theory is used to predict the physical interactions between species in solution. The method is applied to example binary and multicomponent solvating systems including a quaternary trioctylamine/acetic acid/solvent/water system from a developmental liquid extraction process that exhibit unusually complex phase equilibria. The proposed method gives a much better representation of such systems than has been reported previously. Potential shortcomings of the approach are also discussed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/i200018a011</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-4305 |
ispartof | Ind. Eng. Chem. Process Des. Dev.; (United States), 1982-07, Vol.21 (3), p.409-415 |
issn | 0196-4305 1541-5716 |
language | eng |
recordid | cdi_crossref_primary_10_1021_i200018a011 |
source | ACS Publications |
subjects | 400105 - Separation Procedures ACETIC ACID AMINES CARBOXYLIC ACIDS CHELATING AGENTS CORRELATIONS DATA DATA ANALYSIS DISPERSIONS EQUILIBRIUM EVALUATED DATA EXTRACTION HYDROGEN COMPOUNDS INFORMATION INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY MIXTURES MONOCARBOXYLIC ACIDS MULTIGROUP THEORY NEUTRON TRANSPORT THEORY NUMERICAL DATA ORGANIC ACIDS ORGANIC COMPOUNDS OXYGEN COMPOUNDS PHASE STABILITY SEPARATION PROCESSES SIMULATION SOLUTIONS SOLVATION SOLVENT EXTRACTION STABILITY TOA TRANSPORT THEORY WATER |
title | Thermodynamic model for solvating solutions with physical interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20model%20for%20solvating%20solutions%20with%20physical%20interactions&rft.jtitle=Ind.%20Eng.%20Chem.%20Process%20Des.%20Dev.;%20(United%20States)&rft.au=Spala,%20Eugene%20E&rft.aucorp=Department%20of%20Chemical%20Engineering,%20University%20of%20Washington,%20Seattle,%20Washington%2098195&rft.date=1982-07-01&rft.volume=21&rft.issue=3&rft.spage=409&rft.epage=415&rft.pages=409-415&rft.issn=0196-4305&rft.eissn=1541-5716&rft_id=info:doi/10.1021/i200018a011&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_X80T74MX_F%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |