Operational, Combustion, and Emission Characteristics of a Small-Scale Combustor

This article examines the operational, combustion, and emission characteristics of a small-scale combustor. Flue-gas composition data and hydroxyl radical chemiluminescence (OH*) imaging are reported as a function of the excess air coefficient (λ), which in the present configuration implies also cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2011-06, Vol.25 (6), p.2469-2480
Hauptverfasser: Veríssimo, A. S, Rocha, A. M. A, Costa, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article examines the operational, combustion, and emission characteristics of a small-scale combustor. Flue-gas composition data and hydroxyl radical chemiluminescence (OH*) imaging are reported as a function of the excess air coefficient (λ), which in the present configuration implies also changes in the inlet air velocity. For two of these combustor operating conditions, spatial distributions of temperature and of O2, CO2, unburned hydrocarbons, CO, and NO x concentrations are also reported. The OH* images showed that as λ increases the main reaction zone moves progressively closer to the burner presumably due to the increase in the central jet momentum, which leads to a faster entrainment of fuel and burnt gases, and due to the increase in the oxygen concentration in the recirculated flue-gas. The OH* images also reveal that the structure of the main reaction zone and the combustion regime change with λ. For low values of λ the reaction zone is uniformly distributed over a relatively large volume of the combustor (flameless combustion, also known as MILD combustion, HiTAC, or colorless distributed combustion), whereas for high values of λ, the OH* images suggest and still photographs confirm the presence of a flame front located at the strong shear region between the central jet and the external recirculation zone (conventional lean combustion). The present combustor yields very low NO x (< 10 ppm @ 15% O2) and CO emissions (< 12 ppm @ 15% O2) for all conditions studied, which is attributed to the suppression of the thermal mechanism brought about by the flameless oxidation and conventional lean combustion modes. Finally, the detailed measurements made inside the combustor for the two operating conditions, a flameless oxidation condition and a conventional lean combustion condition, confirmed the observations based on the OH* images.
ISSN:0887-0624
1520-5029
DOI:10.1021/ef200258t