Hydrothermal Liquefaction and Gasification of Nannochloropsis sp

We converted the marine microalga Nannochloropsis sp. into a crude bio-oil product and a gaseous product via hydrothermal processing from 200 to 500 °C and a batch holding time of 60 min. A moderate temperature of 350 °C led to the highest bio-oil yield of 43 wt %. We estimate the heating value of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2010-06, Vol.24 (6), p.3639-3646
Hauptverfasser: Brown, Tylisha M, Duan, Peigao, Savage, Phillip E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3646
container_issue 6
container_start_page 3639
container_title Energy & fuels
container_volume 24
creator Brown, Tylisha M
Duan, Peigao
Savage, Phillip E
description We converted the marine microalga Nannochloropsis sp. into a crude bio-oil product and a gaseous product via hydrothermal processing from 200 to 500 °C and a batch holding time of 60 min. A moderate temperature of 350 °C led to the highest bio-oil yield of 43 wt %. We estimate the heating value of the bio-oil to be about 39 MJ kg−1, which is comparable to that of a petroleum crude oil. The H/C and O/C ratios for the bio-oil decreased from 1.73 and 0.12, respectively, for the 200 °C product to 1.04 and 0.05, respectively, for the 500 °C product. Major bio-oil constituents include phenol and its alkylated derivatives, heterocyclic N-containing compounds, long-chain fatty acids, alkanes and alkenes, and derivatives of phytol and cholesterol. CO2 was always the most abundant gas product. H2 was the second most abundant gas at all temperatures other than 500 °C, where its yield was surpassed by that of CH4. The activation energies for gas formation suggest the presence of gas-forming reactions other than steam reforming. Nearly 80% of the carbon and up to 90% of the chemical energy originally present in the microalga can be recovered as either bio-oil or gas products.
doi_str_mv 10.1021/ef100203u
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ef100203u</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b645793977</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-34e5b31cecde1f0aaf94f188a54666ab6dfcb76be883ca9c049e433d512c098e3</originalsourceid><addsrcrecordid>eNptjz1PwzAURS0EEqEw8A-yMDAEnj_rbKAKWqSoXWCOXhxbdZXGwU6G_nsKRUxMV7o6urqHkFsKDxQYfbSOAjDg0xnJqGRQSGDlOclA63kBiolLcpXSDgAU1zIjT6tDG8O4tXGPXV75z8k6NKMPfY59my8xeecN_hTB5Wvs-2C2XYhhSD7labgmFw67ZG9-c0Y-Xl_eF6ui2izfFs9VgZzJseDCyoZTY01rqQNEVwpHtUYplFLYqNaZZq4aqzU3WBoQpRWct5IyA6W2fEbuT7smhpSidfUQ_R7joaZQf6vXf-pH9u7Eokn1LkyxPz77h_sCQ0NY0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrothermal Liquefaction and Gasification of Nannochloropsis sp</title><source>ACS Publications</source><creator>Brown, Tylisha M ; Duan, Peigao ; Savage, Phillip E</creator><creatorcontrib>Brown, Tylisha M ; Duan, Peigao ; Savage, Phillip E</creatorcontrib><description>We converted the marine microalga Nannochloropsis sp. into a crude bio-oil product and a gaseous product via hydrothermal processing from 200 to 500 °C and a batch holding time of 60 min. A moderate temperature of 350 °C led to the highest bio-oil yield of 43 wt %. We estimate the heating value of the bio-oil to be about 39 MJ kg−1, which is comparable to that of a petroleum crude oil. The H/C and O/C ratios for the bio-oil decreased from 1.73 and 0.12, respectively, for the 200 °C product to 1.04 and 0.05, respectively, for the 500 °C product. Major bio-oil constituents include phenol and its alkylated derivatives, heterocyclic N-containing compounds, long-chain fatty acids, alkanes and alkenes, and derivatives of phytol and cholesterol. CO2 was always the most abundant gas product. H2 was the second most abundant gas at all temperatures other than 500 °C, where its yield was surpassed by that of CH4. The activation energies for gas formation suggest the presence of gas-forming reactions other than steam reforming. Nearly 80% of the carbon and up to 90% of the chemical energy originally present in the microalga can be recovered as either bio-oil or gas products.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/ef100203u</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Renewable Energy</subject><ispartof>Energy &amp; fuels, 2010-06, Vol.24 (6), p.3639-3646</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-34e5b31cecde1f0aaf94f188a54666ab6dfcb76be883ca9c049e433d512c098e3</citedby><cites>FETCH-LOGICAL-a325t-34e5b31cecde1f0aaf94f188a54666ab6dfcb76be883ca9c049e433d512c098e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ef100203u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ef100203u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Brown, Tylisha M</creatorcontrib><creatorcontrib>Duan, Peigao</creatorcontrib><creatorcontrib>Savage, Phillip E</creatorcontrib><title>Hydrothermal Liquefaction and Gasification of Nannochloropsis sp</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>We converted the marine microalga Nannochloropsis sp. into a crude bio-oil product and a gaseous product via hydrothermal processing from 200 to 500 °C and a batch holding time of 60 min. A moderate temperature of 350 °C led to the highest bio-oil yield of 43 wt %. We estimate the heating value of the bio-oil to be about 39 MJ kg−1, which is comparable to that of a petroleum crude oil. The H/C and O/C ratios for the bio-oil decreased from 1.73 and 0.12, respectively, for the 200 °C product to 1.04 and 0.05, respectively, for the 500 °C product. Major bio-oil constituents include phenol and its alkylated derivatives, heterocyclic N-containing compounds, long-chain fatty acids, alkanes and alkenes, and derivatives of phytol and cholesterol. CO2 was always the most abundant gas product. H2 was the second most abundant gas at all temperatures other than 500 °C, where its yield was surpassed by that of CH4. The activation energies for gas formation suggest the presence of gas-forming reactions other than steam reforming. Nearly 80% of the carbon and up to 90% of the chemical energy originally present in the microalga can be recovered as either bio-oil or gas products.</description><subject>Renewable Energy</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptjz1PwzAURS0EEqEw8A-yMDAEnj_rbKAKWqSoXWCOXhxbdZXGwU6G_nsKRUxMV7o6urqHkFsKDxQYfbSOAjDg0xnJqGRQSGDlOclA63kBiolLcpXSDgAU1zIjT6tDG8O4tXGPXV75z8k6NKMPfY59my8xeecN_hTB5Wvs-2C2XYhhSD7labgmFw67ZG9-c0Y-Xl_eF6ui2izfFs9VgZzJseDCyoZTY01rqQNEVwpHtUYplFLYqNaZZq4aqzU3WBoQpRWct5IyA6W2fEbuT7smhpSidfUQ_R7joaZQf6vXf-pH9u7Eokn1LkyxPz77h_sCQ0NY0g</recordid><startdate>20100617</startdate><enddate>20100617</enddate><creator>Brown, Tylisha M</creator><creator>Duan, Peigao</creator><creator>Savage, Phillip E</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100617</creationdate><title>Hydrothermal Liquefaction and Gasification of Nannochloropsis sp</title><author>Brown, Tylisha M ; Duan, Peigao ; Savage, Phillip E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-34e5b31cecde1f0aaf94f188a54666ab6dfcb76be883ca9c049e433d512c098e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Renewable Energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Tylisha M</creatorcontrib><creatorcontrib>Duan, Peigao</creatorcontrib><creatorcontrib>Savage, Phillip E</creatorcontrib><collection>CrossRef</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Tylisha M</au><au>Duan, Peigao</au><au>Savage, Phillip E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal Liquefaction and Gasification of Nannochloropsis sp</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2010-06-17</date><risdate>2010</risdate><volume>24</volume><issue>6</issue><spage>3639</spage><epage>3646</epage><pages>3639-3646</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>We converted the marine microalga Nannochloropsis sp. into a crude bio-oil product and a gaseous product via hydrothermal processing from 200 to 500 °C and a batch holding time of 60 min. A moderate temperature of 350 °C led to the highest bio-oil yield of 43 wt %. We estimate the heating value of the bio-oil to be about 39 MJ kg−1, which is comparable to that of a petroleum crude oil. The H/C and O/C ratios for the bio-oil decreased from 1.73 and 0.12, respectively, for the 200 °C product to 1.04 and 0.05, respectively, for the 500 °C product. Major bio-oil constituents include phenol and its alkylated derivatives, heterocyclic N-containing compounds, long-chain fatty acids, alkanes and alkenes, and derivatives of phytol and cholesterol. CO2 was always the most abundant gas product. H2 was the second most abundant gas at all temperatures other than 500 °C, where its yield was surpassed by that of CH4. The activation energies for gas formation suggest the presence of gas-forming reactions other than steam reforming. Nearly 80% of the carbon and up to 90% of the chemical energy originally present in the microalga can be recovered as either bio-oil or gas products.</abstract><pub>American Chemical Society</pub><doi>10.1021/ef100203u</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2010-06, Vol.24 (6), p.3639-3646
issn 0887-0624
1520-5029
language eng
recordid cdi_crossref_primary_10_1021_ef100203u
source ACS Publications
subjects Renewable Energy
title Hydrothermal Liquefaction and Gasification of Nannochloropsis sp
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20Liquefaction%20and%20Gasification%20of%20Nannochloropsis%20sp&rft.jtitle=Energy%20&%20fuels&rft.au=Brown,%20Tylisha%20M&rft.date=2010-06-17&rft.volume=24&rft.issue=6&rft.spage=3639&rft.epage=3646&rft.pages=3639-3646&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/ef100203u&rft_dat=%3Cacs_cross%3Eb645793977%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true