Hydrothermal Liquefaction of Macroalgae Enteromorpha prolifera to Bio-oil
Marine macroalgae Enteromorpha prolifera, one of the main algae genera for green tide, was converted to bio-oil by hydrothermal liquefaction in a batch reactor at temperatures of 220−320 °C. The liquefaction products were separated into a dichloromethane-soluble fraction (bio-oil), water-soluble fra...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2010-07, Vol.24 (7), p.4054-4061 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Marine macroalgae Enteromorpha prolifera, one of the main algae genera for green tide, was converted to bio-oil by hydrothermal liquefaction in a batch reactor at temperatures of 220−320 °C. The liquefaction products were separated into a dichloromethane-soluble fraction (bio-oil), water-soluble fraction, solid residue, and gaseous fraction. Effects of the temperature, reaction time, and Na2CO3 catalyst on the yields of liquefaction products were investigated. A moderate temperature of 300 °C with 5 wt % Na2CO3 and reaction time of 30 min led to the highest bio-oil yield of 23.0 wt %. The raw algae and liquefaction products were analyzed using elemental analysis, Fourier transform infrared (FTIR) spectroscopy, gas chromatography−mass spectrometry (GC−MS), and 1H nuclear magnetic resonance (NMR). The higher heating values (HHVs) of bio-oils obtained at 300 °C were around 28−30 MJ/kg. The bio-oil was a complex mixture of ketones, aldehydes, phenols, alkenes, fatty acids, esters, aromatics, and nitrogen-containing heterocyclic compounds. Acetic acid was the main component of the water-soluble products. The results might be helpful to find a possible strategy for use of byproducts of green tide as feedstock for bio-oil production, which should be beneficial for environmental protection and renewable energy development. |
---|---|
ISSN: | 0887-0624 1520-5029 |
DOI: | 10.1021/ef100151h |