Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity
We present a scalable wet chemical synthesis for a catalytically active nanostructured amorphous molybdenum sulfide material. The catalyst film is one of the most active nonprecious metal materials for electrochemical hydrogen evolution, drawing 10 mA/cm2 at ∼200 mV overpotential. To identify the ac...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2012-09, Vol.2 (9), p.1916-1923 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1923 |
---|---|
container_issue | 9 |
container_start_page | 1916 |
container_title | ACS catalysis |
container_volume | 2 |
creator | Benck, Jesse D Chen, Zhebo Kuritzky, Leah Y Forman, Arnold J Jaramillo, Thomas F |
description | We present a scalable wet chemical synthesis for a catalytically active nanostructured amorphous molybdenum sulfide material. The catalyst film is one of the most active nonprecious metal materials for electrochemical hydrogen evolution, drawing 10 mA/cm2 at ∼200 mV overpotential. To identify the active phase of the material, we perform X-ray photoelectron spectroscopy after testing under a variety of conditions. As deposited, the catalyst resembles amorphous MoS3, but domains resembling MoS2 in composition and chemical state are created under reaction conditions and may contribute to this material’s high electrochemical activity. The activity scales with electrochemically active surface area, suggesting that the rough, nanostructured catalyst morphology also contributes substantially to the film’s high activity. Electrochemical stability tests indicate that the catalyst remains highly active throughout prolonged operation. The overpotential required to attain a current density of 10 mA/cm2 increases by only 57 mV after 10 000 reductive potential cycles. Our enhanced understanding of this highly active amorphous molybdenum sulfide hydrogen evolution catalyst may facilitate the development of economical electrochemical hydrogen production systems. |
doi_str_mv | 10.1021/cs300451q |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cs300451q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c364564156</sourcerecordid><originalsourceid>FETCH-LOGICAL-a286t-a3c00a45ec7d259813c229111ad879f82ad4818c3475bba15f2fbba387043d8f3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhQdRsNQu_AdBcOFiNI9JJ-OulGoLlQrqekjz6KRMk5pkhNn7w01pEReuzr3wncO9J8uuEbxHEKMHEQiEBUWfZ9kAI0pzWhB6_me-zEYhbCE8UGNWwkH2Pdk5v29cF8CLa_u1VLbbgbeu1UYqMOWRt32IAWjnwaxVInonGrUzgrdg3kvvNsqCV-9kJ6Jx9hEsbDCbJjmMjQ7ERoGVNxtjgdOHzfhTaDQCTJLny8T-KrvQvA1qdNJh9vE0e5_O8-XqeTGdLHOO2TjmnAgIeUGVKCWmFUNEYFwhhLhkZaUZ5rJgiAlSlHS95ohqrJOS9GhBJNNkmN0cc12Ipg7CRCUa4axNf9UIMgRJlaC7IyS8C8ErXe-92XHfJ6I-1Fz_1pzY2yPLRai3rvM2nf8P9wO6k32n</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity</title><source>ACS Publications</source><creator>Benck, Jesse D ; Chen, Zhebo ; Kuritzky, Leah Y ; Forman, Arnold J ; Jaramillo, Thomas F</creator><creatorcontrib>Benck, Jesse D ; Chen, Zhebo ; Kuritzky, Leah Y ; Forman, Arnold J ; Jaramillo, Thomas F ; Energy Frontier Research Centers (EFRC) ; Center on Nanostructuring for Efficient Energy Conversion (CNEEC)</creatorcontrib><description>We present a scalable wet chemical synthesis for a catalytically active nanostructured amorphous molybdenum sulfide material. The catalyst film is one of the most active nonprecious metal materials for electrochemical hydrogen evolution, drawing 10 mA/cm2 at ∼200 mV overpotential. To identify the active phase of the material, we perform X-ray photoelectron spectroscopy after testing under a variety of conditions. As deposited, the catalyst resembles amorphous MoS3, but domains resembling MoS2 in composition and chemical state are created under reaction conditions and may contribute to this material’s high electrochemical activity. The activity scales with electrochemically active surface area, suggesting that the rough, nanostructured catalyst morphology also contributes substantially to the film’s high activity. Electrochemical stability tests indicate that the catalyst remains highly active throughout prolonged operation. The overpotential required to attain a current density of 10 mA/cm2 increases by only 57 mV after 10 000 reductive potential cycles. Our enhanced understanding of this highly active amorphous molybdenum sulfide hydrogen evolution catalyst may facilitate the development of economical electrochemical hydrogen production systems.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/cs300451q</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>catalysis (heterogeneous), solar (fuels), photosynthesis (natural and artificial), bio-inspired, electrodes - solar, defects, charge transport, materials and chemistry by design, synthesis (novel materials)</subject><ispartof>ACS catalysis, 2012-09, Vol.2 (9), p.1916-1923</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a286t-a3c00a45ec7d259813c229111ad879f82ad4818c3475bba15f2fbba387043d8f3</citedby><cites>FETCH-LOGICAL-a286t-a3c00a45ec7d259813c229111ad879f82ad4818c3475bba15f2fbba387043d8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cs300451q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cs300451q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1081039$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Benck, Jesse D</creatorcontrib><creatorcontrib>Chen, Zhebo</creatorcontrib><creatorcontrib>Kuritzky, Leah Y</creatorcontrib><creatorcontrib>Forman, Arnold J</creatorcontrib><creatorcontrib>Jaramillo, Thomas F</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center on Nanostructuring for Efficient Energy Conversion (CNEEC)</creatorcontrib><title>Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>We present a scalable wet chemical synthesis for a catalytically active nanostructured amorphous molybdenum sulfide material. The catalyst film is one of the most active nonprecious metal materials for electrochemical hydrogen evolution, drawing 10 mA/cm2 at ∼200 mV overpotential. To identify the active phase of the material, we perform X-ray photoelectron spectroscopy after testing under a variety of conditions. As deposited, the catalyst resembles amorphous MoS3, but domains resembling MoS2 in composition and chemical state are created under reaction conditions and may contribute to this material’s high electrochemical activity. The activity scales with electrochemically active surface area, suggesting that the rough, nanostructured catalyst morphology also contributes substantially to the film’s high activity. Electrochemical stability tests indicate that the catalyst remains highly active throughout prolonged operation. The overpotential required to attain a current density of 10 mA/cm2 increases by only 57 mV after 10 000 reductive potential cycles. Our enhanced understanding of this highly active amorphous molybdenum sulfide hydrogen evolution catalyst may facilitate the development of economical electrochemical hydrogen production systems.</description><subject>catalysis (heterogeneous), solar (fuels), photosynthesis (natural and artificial), bio-inspired, electrodes - solar, defects, charge transport, materials and chemistry by design, synthesis (novel materials)</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhQdRsNQu_AdBcOFiNI9JJ-OulGoLlQrqekjz6KRMk5pkhNn7w01pEReuzr3wncO9J8uuEbxHEKMHEQiEBUWfZ9kAI0pzWhB6_me-zEYhbCE8UGNWwkH2Pdk5v29cF8CLa_u1VLbbgbeu1UYqMOWRt32IAWjnwaxVInonGrUzgrdg3kvvNsqCV-9kJ6Jx9hEsbDCbJjmMjQ7ERoGVNxtjgdOHzfhTaDQCTJLny8T-KrvQvA1qdNJh9vE0e5_O8-XqeTGdLHOO2TjmnAgIeUGVKCWmFUNEYFwhhLhkZaUZ5rJgiAlSlHS95ohqrJOS9GhBJNNkmN0cc12Ipg7CRCUa4axNf9UIMgRJlaC7IyS8C8ErXe-92XHfJ6I-1Fz_1pzY2yPLRai3rvM2nf8P9wO6k32n</recordid><startdate>20120907</startdate><enddate>20120907</enddate><creator>Benck, Jesse D</creator><creator>Chen, Zhebo</creator><creator>Kuritzky, Leah Y</creator><creator>Forman, Arnold J</creator><creator>Jaramillo, Thomas F</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20120907</creationdate><title>Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity</title><author>Benck, Jesse D ; Chen, Zhebo ; Kuritzky, Leah Y ; Forman, Arnold J ; Jaramillo, Thomas F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a286t-a3c00a45ec7d259813c229111ad879f82ad4818c3475bba15f2fbba387043d8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>catalysis (heterogeneous), solar (fuels), photosynthesis (natural and artificial), bio-inspired, electrodes - solar, defects, charge transport, materials and chemistry by design, synthesis (novel materials)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benck, Jesse D</creatorcontrib><creatorcontrib>Chen, Zhebo</creatorcontrib><creatorcontrib>Kuritzky, Leah Y</creatorcontrib><creatorcontrib>Forman, Arnold J</creatorcontrib><creatorcontrib>Jaramillo, Thomas F</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center on Nanostructuring for Efficient Energy Conversion (CNEEC)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benck, Jesse D</au><au>Chen, Zhebo</au><au>Kuritzky, Leah Y</au><au>Forman, Arnold J</au><au>Jaramillo, Thomas F</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Center on Nanostructuring for Efficient Energy Conversion (CNEEC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2012-09-07</date><risdate>2012</risdate><volume>2</volume><issue>9</issue><spage>1916</spage><epage>1923</epage><pages>1916-1923</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>We present a scalable wet chemical synthesis for a catalytically active nanostructured amorphous molybdenum sulfide material. The catalyst film is one of the most active nonprecious metal materials for electrochemical hydrogen evolution, drawing 10 mA/cm2 at ∼200 mV overpotential. To identify the active phase of the material, we perform X-ray photoelectron spectroscopy after testing under a variety of conditions. As deposited, the catalyst resembles amorphous MoS3, but domains resembling MoS2 in composition and chemical state are created under reaction conditions and may contribute to this material’s high electrochemical activity. The activity scales with electrochemically active surface area, suggesting that the rough, nanostructured catalyst morphology also contributes substantially to the film’s high activity. Electrochemical stability tests indicate that the catalyst remains highly active throughout prolonged operation. The overpotential required to attain a current density of 10 mA/cm2 increases by only 57 mV after 10 000 reductive potential cycles. Our enhanced understanding of this highly active amorphous molybdenum sulfide hydrogen evolution catalyst may facilitate the development of economical electrochemical hydrogen production systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/cs300451q</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2155-5435 |
ispartof | ACS catalysis, 2012-09, Vol.2 (9), p.1916-1923 |
issn | 2155-5435 2155-5435 |
language | eng |
recordid | cdi_crossref_primary_10_1021_cs300451q |
source | ACS Publications |
subjects | catalysis (heterogeneous), solar (fuels), photosynthesis (natural and artificial), bio-inspired, electrodes - solar, defects, charge transport, materials and chemistry by design, synthesis (novel materials) |
title | Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amorphous%20Molybdenum%20Sulfide%20Catalysts%20for%20Electrochemical%20Hydrogen%20Production:%20Insights%20into%20the%20Origin%20of%20their%20Catalytic%20Activity&rft.jtitle=ACS%20catalysis&rft.au=Benck,%20Jesse%20D&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2012-09-07&rft.volume=2&rft.issue=9&rft.spage=1916&rft.epage=1923&rft.pages=1916-1923&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/cs300451q&rft_dat=%3Cacs_osti_%3Ec364564156%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |