Electrical-Transport Properties of Hydrated and Anhydrous Vanadyl Phosphate in the Temperature Range 20−200 °C
The ac/dc conductivity of hydrated and anhydrous vanadyl phosphate has been measured in the range 20−200 °C in wet and dry nitrogen. Emf and thermoelectric power measurements have also been carried out at room temperature and 180 °C, respectively. At 20 °C and 58% relative humidity, the ac conductiv...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 1996, Vol.8 (10), p.2505-2509 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2509 |
---|---|
container_issue | 10 |
container_start_page | 2505 |
container_title | Chemistry of materials |
container_volume | 8 |
creator | Zima, V Vlček, M Beneš, L Casciola, M Massinelli, L Palombari, R |
description | The ac/dc conductivity of hydrated and anhydrous vanadyl phosphate has been measured in the range 20−200 °C in wet and dry nitrogen. Emf and thermoelectric power measurements have also been carried out at room temperature and 180 °C, respectively. At 20 °C and 58% relative humidity, the ac conductivity of a pellet of VOPO4·2H2O is of the order 10-5 S cm-1. Both conductivity and emf measurements indicate that at room temperature VOPO4·2H2O is a mixed protonic−electronic conductor with dominant protonic component (t H + ≈ 0.9). The presence of mixed conduction has allowed to use VOPO4·2H2O as an electrode able to exchange reversibly protons with a solid-state protonic conductor. Proton conduction in hydrated vanadyl phosphate decreases with increasing temperature, due to the loss of intercalated water, and vanishes at 70 °C concomitantly with the formation of VOPO4·H2O. The activation energy for electronic conduction of anhydrous VOPO4 in a dry nitrogen atmosphere is 11.9 kcal/mol between 100 and 200 °C. In this temperature range the electronic conductivity is enhanced by the presence of water chemisorbed on surface sites. Possible mechanisms accounting for this effect are suggested. |
doi_str_mv | 10.1021/cm960217l |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cm960217l</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c067034494</sourcerecordid><originalsourceid>FETCH-LOGICAL-a305t-b1ec0a21c7afa1f71af7090a7cf072f3ce3d0479e866d232d32850e638328b903</originalsourceid><addsrcrecordid>eNptkEFOwzAQRS0EEqWw4AZewIJFYGw3cbKsKkqRKlGgsGBjTR2bpqRJsFOJ3oA1J-EMHIWTYFTUFas_o3l_RvMJOWZwzoCzC73MkqCy3CEdFnOIYgC-SzqQZjLqyTjZJwfeLwBYwNMOeb0sjW5dobGMpg4r39SupRNXN8a1hfG0tnS0zh22JqdY5bRfzUNbrzx9xArzdUkn89o38wDQoqLt3NCpWQY3titn6B1Wz4Zy-H7_4AD063NwSPYslt4c_WmXPAwvp4NRNL65uh70xxEKiNtoxowG5ExLtMisZGglZIBSW5DcCm1EDj2ZmTRJci54Lngag0lEGopZBqJLzjZ7tau9d8aqxhVLdGvFQP1mpbZZBfZkwzboQxI2BKELvzXwXgoQi4BFG6zwrXnbjtG9qEQKGavp5F49DXuDyRhuVRz40w2P2qtFvXJVePif8z_CDYWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrical-Transport Properties of Hydrated and Anhydrous Vanadyl Phosphate in the Temperature Range 20−200 °C</title><source>ACS Publications</source><creator>Zima, V ; Vlček, M ; Beneš, L ; Casciola, M ; Massinelli, L ; Palombari, R</creator><creatorcontrib>Zima, V ; Vlček, M ; Beneš, L ; Casciola, M ; Massinelli, L ; Palombari, R</creatorcontrib><description>The ac/dc conductivity of hydrated and anhydrous vanadyl phosphate has been measured in the range 20−200 °C in wet and dry nitrogen. Emf and thermoelectric power measurements have also been carried out at room temperature and 180 °C, respectively. At 20 °C and 58% relative humidity, the ac conductivity of a pellet of VOPO4·2H2O is of the order 10-5 S cm-1. Both conductivity and emf measurements indicate that at room temperature VOPO4·2H2O is a mixed protonic−electronic conductor with dominant protonic component (t H + ≈ 0.9). The presence of mixed conduction has allowed to use VOPO4·2H2O as an electrode able to exchange reversibly protons with a solid-state protonic conductor. Proton conduction in hydrated vanadyl phosphate decreases with increasing temperature, due to the loss of intercalated water, and vanishes at 70 °C concomitantly with the formation of VOPO4·H2O. The activation energy for electronic conduction of anhydrous VOPO4 in a dry nitrogen atmosphere is 11.9 kcal/mol between 100 and 200 °C. In this temperature range the electronic conductivity is enhanced by the presence of water chemisorbed on surface sites. Possible mechanisms accounting for this effect are suggested.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm960217l</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronic transport in condensed matter ; Exact sciences and technology ; Mixed conductivity and conductivity transitions ; Physics</subject><ispartof>Chemistry of materials, 1996, Vol.8 (10), p.2505-2509</ispartof><rights>Copyright © 1996 American Chemical Society</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a305t-b1ec0a21c7afa1f71af7090a7cf072f3ce3d0479e866d232d32850e638328b903</citedby><cites>FETCH-LOGICAL-a305t-b1ec0a21c7afa1f71af7090a7cf072f3ce3d0479e866d232d32850e638328b903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm960217l$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm960217l$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,4028,27085,27932,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2480053$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zima, V</creatorcontrib><creatorcontrib>Vlček, M</creatorcontrib><creatorcontrib>Beneš, L</creatorcontrib><creatorcontrib>Casciola, M</creatorcontrib><creatorcontrib>Massinelli, L</creatorcontrib><creatorcontrib>Palombari, R</creatorcontrib><title>Electrical-Transport Properties of Hydrated and Anhydrous Vanadyl Phosphate in the Temperature Range 20−200 °C</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The ac/dc conductivity of hydrated and anhydrous vanadyl phosphate has been measured in the range 20−200 °C in wet and dry nitrogen. Emf and thermoelectric power measurements have also been carried out at room temperature and 180 °C, respectively. At 20 °C and 58% relative humidity, the ac conductivity of a pellet of VOPO4·2H2O is of the order 10-5 S cm-1. Both conductivity and emf measurements indicate that at room temperature VOPO4·2H2O is a mixed protonic−electronic conductor with dominant protonic component (t H + ≈ 0.9). The presence of mixed conduction has allowed to use VOPO4·2H2O as an electrode able to exchange reversibly protons with a solid-state protonic conductor. Proton conduction in hydrated vanadyl phosphate decreases with increasing temperature, due to the loss of intercalated water, and vanishes at 70 °C concomitantly with the formation of VOPO4·H2O. The activation energy for electronic conduction of anhydrous VOPO4 in a dry nitrogen atmosphere is 11.9 kcal/mol between 100 and 200 °C. In this temperature range the electronic conductivity is enhanced by the presence of water chemisorbed on surface sites. Possible mechanisms accounting for this effect are suggested.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronic transport in condensed matter</subject><subject>Exact sciences and technology</subject><subject>Mixed conductivity and conductivity transitions</subject><subject>Physics</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNptkEFOwzAQRS0EEqWw4AZewIJFYGw3cbKsKkqRKlGgsGBjTR2bpqRJsFOJ3oA1J-EMHIWTYFTUFas_o3l_RvMJOWZwzoCzC73MkqCy3CEdFnOIYgC-SzqQZjLqyTjZJwfeLwBYwNMOeb0sjW5dobGMpg4r39SupRNXN8a1hfG0tnS0zh22JqdY5bRfzUNbrzx9xArzdUkn89o38wDQoqLt3NCpWQY3titn6B1Wz4Zy-H7_4AD063NwSPYslt4c_WmXPAwvp4NRNL65uh70xxEKiNtoxowG5ExLtMisZGglZIBSW5DcCm1EDj2ZmTRJci54Lngag0lEGopZBqJLzjZ7tau9d8aqxhVLdGvFQP1mpbZZBfZkwzboQxI2BKELvzXwXgoQi4BFG6zwrXnbjtG9qEQKGavp5F49DXuDyRhuVRz40w2P2qtFvXJVePif8z_CDYWM</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Zima, V</creator><creator>Vlček, M</creator><creator>Beneš, L</creator><creator>Casciola, M</creator><creator>Massinelli, L</creator><creator>Palombari, R</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1996</creationdate><title>Electrical-Transport Properties of Hydrated and Anhydrous Vanadyl Phosphate in the Temperature Range 20−200 °C</title><author>Zima, V ; Vlček, M ; Beneš, L ; Casciola, M ; Massinelli, L ; Palombari, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a305t-b1ec0a21c7afa1f71af7090a7cf072f3ce3d0479e866d232d32850e638328b903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronic transport in condensed matter</topic><topic>Exact sciences and technology</topic><topic>Mixed conductivity and conductivity transitions</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zima, V</creatorcontrib><creatorcontrib>Vlček, M</creatorcontrib><creatorcontrib>Beneš, L</creatorcontrib><creatorcontrib>Casciola, M</creatorcontrib><creatorcontrib>Massinelli, L</creatorcontrib><creatorcontrib>Palombari, R</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zima, V</au><au>Vlček, M</au><au>Beneš, L</au><au>Casciola, M</au><au>Massinelli, L</au><au>Palombari, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical-Transport Properties of Hydrated and Anhydrous Vanadyl Phosphate in the Temperature Range 20−200 °C</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>1996</date><risdate>1996</risdate><volume>8</volume><issue>10</issue><spage>2505</spage><epage>2509</epage><pages>2505-2509</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The ac/dc conductivity of hydrated and anhydrous vanadyl phosphate has been measured in the range 20−200 °C in wet and dry nitrogen. Emf and thermoelectric power measurements have also been carried out at room temperature and 180 °C, respectively. At 20 °C and 58% relative humidity, the ac conductivity of a pellet of VOPO4·2H2O is of the order 10-5 S cm-1. Both conductivity and emf measurements indicate that at room temperature VOPO4·2H2O is a mixed protonic−electronic conductor with dominant protonic component (t H + ≈ 0.9). The presence of mixed conduction has allowed to use VOPO4·2H2O as an electrode able to exchange reversibly protons with a solid-state protonic conductor. Proton conduction in hydrated vanadyl phosphate decreases with increasing temperature, due to the loss of intercalated water, and vanishes at 70 °C concomitantly with the formation of VOPO4·H2O. The activation energy for electronic conduction of anhydrous VOPO4 in a dry nitrogen atmosphere is 11.9 kcal/mol between 100 and 200 °C. In this temperature range the electronic conductivity is enhanced by the presence of water chemisorbed on surface sites. Possible mechanisms accounting for this effect are suggested.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/cm960217l</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 1996, Vol.8 (10), p.2505-2509 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_crossref_primary_10_1021_cm960217l |
source | ACS Publications |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Electronic transport in condensed matter Exact sciences and technology Mixed conductivity and conductivity transitions Physics |
title | Electrical-Transport Properties of Hydrated and Anhydrous Vanadyl Phosphate in the Temperature Range 20−200 °C |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T17%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical-Transport%20Properties%20of%20Hydrated%20and%20Anhydrous%20Vanadyl%20Phosphate%20in%20the%20Temperature%20Range%2020%E2%88%92200%20%C2%B0C&rft.jtitle=Chemistry%20of%20materials&rft.au=Zima,%20V&rft.date=1996&rft.volume=8&rft.issue=10&rft.spage=2505&rft.epage=2509&rft.pages=2505-2509&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm960217l&rft_dat=%3Cacs_cross%3Ec067034494%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |