Controlling the Thermoelectric Properties of Thiophene-Derived Single-Molecule Junctions

Thermoelectrics are famously challenging to optimize, because of inverse coupling of the Seebeck coefficient and electrical conductivity, both of which control the thermoelectric power factor. Inorganic–organic interfaces provide a promising route for realization of the strong electrical and thermal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2014-12, Vol.26 (24), p.7229-7235
Hauptverfasser: Chang, William B, Mai, Cheng-Kang, Kotiuga, Michele, Neaton, Jeffrey B, Bazan, Guillermo C, Segalman, Rachel A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7235
container_issue 24
container_start_page 7229
container_title Chemistry of materials
container_volume 26
creator Chang, William B
Mai, Cheng-Kang
Kotiuga, Michele
Neaton, Jeffrey B
Bazan, Guillermo C
Segalman, Rachel A
description Thermoelectrics are famously challenging to optimize, because of inverse coupling of the Seebeck coefficient and electrical conductivity, both of which control the thermoelectric power factor. Inorganic–organic interfaces provide a promising route for realization of the strong electrical and thermal asymmetries required for thermoelectrics. In this work, transport properties of inorganic–organic interfaces are probed and understood at the molecular scale using the STM-break junction measurement technique, theory, and a class of newly synthesized molecules. We synthesized a series of disubstituted thiophene derivatives varying the length of alkylthio-linkers and the number of thiophene rings. These molecules allow the systematic tuning of electronic resonances within the junction. We observed that these molecules have a decreasing Seebeck coefficient with increasing length of the alkyl chain, while oligothiophene junctions show an increasing Seebeck coefficient with length. We find that thiophene–Au junctions have significantly higher Seebeck coefficients, compared to benzenedithiol (in the range of 7–15 μV/K). A minimal tight-binding model, including a gateway state associated with the S–Au bond, captures and explains both trends. This work identifies S–Au gateway states as being important and potentially tunable features of junction electronic structure for enhancing the power factor of organic/inorganic interfaces.
doi_str_mv 10.1021/cm504254n
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cm504254n</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a564183372</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-c4173de84b927606be788c9c52618ec68c7e177982264ddb0e93a32bf6b06f913</originalsourceid><addsrcrecordid>eNptkEtLxDAUhYMoWEcX_oNuXLiI3qTNo0sZ34woOIK70qa3NkMnGZKO4L83MuLK1Vnc77scDiGnDC4YcHZp1gJKLkq3RzImOFABwPdJBrpStFRCHpKjGFcALOE6I-9z76bgx9G6j3waMF8OGNYeRzRTsCZ_CX6DYbIYc9-no_WbAR3Sawz2E7v8NXkj0iefhO2I-ePWmcl6F4_JQd-MEU9-c0bebm-W83u6eL57mF8taFNwMVFTMlV0qMu24kqCbFFpbSojuGQajdRGIVOq0pzLsutawKpIZtvLFmRfsWJGznd_TfAxBuzrTbDrJnzVDOqfSeq_SRJ7tmMbE-uV3waXmv3DfQMLS2C7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlling the Thermoelectric Properties of Thiophene-Derived Single-Molecule Junctions</title><source>American Chemical Society Journals</source><creator>Chang, William B ; Mai, Cheng-Kang ; Kotiuga, Michele ; Neaton, Jeffrey B ; Bazan, Guillermo C ; Segalman, Rachel A</creator><creatorcontrib>Chang, William B ; Mai, Cheng-Kang ; Kotiuga, Michele ; Neaton, Jeffrey B ; Bazan, Guillermo C ; Segalman, Rachel A</creatorcontrib><description>Thermoelectrics are famously challenging to optimize, because of inverse coupling of the Seebeck coefficient and electrical conductivity, both of which control the thermoelectric power factor. Inorganic–organic interfaces provide a promising route for realization of the strong electrical and thermal asymmetries required for thermoelectrics. In this work, transport properties of inorganic–organic interfaces are probed and understood at the molecular scale using the STM-break junction measurement technique, theory, and a class of newly synthesized molecules. We synthesized a series of disubstituted thiophene derivatives varying the length of alkylthio-linkers and the number of thiophene rings. These molecules allow the systematic tuning of electronic resonances within the junction. We observed that these molecules have a decreasing Seebeck coefficient with increasing length of the alkyl chain, while oligothiophene junctions show an increasing Seebeck coefficient with length. We find that thiophene–Au junctions have significantly higher Seebeck coefficients, compared to benzenedithiol (in the range of 7–15 μV/K). A minimal tight-binding model, including a gateway state associated with the S–Au bond, captures and explains both trends. This work identifies S–Au gateway states as being important and potentially tunable features of junction electronic structure for enhancing the power factor of organic/inorganic interfaces.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm504254n</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2014-12, Vol.26 (24), p.7229-7235</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-c4173de84b927606be788c9c52618ec68c7e177982264ddb0e93a32bf6b06f913</citedby><cites>FETCH-LOGICAL-a325t-c4173de84b927606be788c9c52618ec68c7e177982264ddb0e93a32bf6b06f913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm504254n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm504254n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Chang, William B</creatorcontrib><creatorcontrib>Mai, Cheng-Kang</creatorcontrib><creatorcontrib>Kotiuga, Michele</creatorcontrib><creatorcontrib>Neaton, Jeffrey B</creatorcontrib><creatorcontrib>Bazan, Guillermo C</creatorcontrib><creatorcontrib>Segalman, Rachel A</creatorcontrib><title>Controlling the Thermoelectric Properties of Thiophene-Derived Single-Molecule Junctions</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Thermoelectrics are famously challenging to optimize, because of inverse coupling of the Seebeck coefficient and electrical conductivity, both of which control the thermoelectric power factor. Inorganic–organic interfaces provide a promising route for realization of the strong electrical and thermal asymmetries required for thermoelectrics. In this work, transport properties of inorganic–organic interfaces are probed and understood at the molecular scale using the STM-break junction measurement technique, theory, and a class of newly synthesized molecules. We synthesized a series of disubstituted thiophene derivatives varying the length of alkylthio-linkers and the number of thiophene rings. These molecules allow the systematic tuning of electronic resonances within the junction. We observed that these molecules have a decreasing Seebeck coefficient with increasing length of the alkyl chain, while oligothiophene junctions show an increasing Seebeck coefficient with length. We find that thiophene–Au junctions have significantly higher Seebeck coefficients, compared to benzenedithiol (in the range of 7–15 μV/K). A minimal tight-binding model, including a gateway state associated with the S–Au bond, captures and explains both trends. This work identifies S–Au gateway states as being important and potentially tunable features of junction electronic structure for enhancing the power factor of organic/inorganic interfaces.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkEtLxDAUhYMoWEcX_oNuXLiI3qTNo0sZ34woOIK70qa3NkMnGZKO4L83MuLK1Vnc77scDiGnDC4YcHZp1gJKLkq3RzImOFABwPdJBrpStFRCHpKjGFcALOE6I-9z76bgx9G6j3waMF8OGNYeRzRTsCZ_CX6DYbIYc9-no_WbAR3Sawz2E7v8NXkj0iefhO2I-ePWmcl6F4_JQd-MEU9-c0bebm-W83u6eL57mF8taFNwMVFTMlV0qMu24kqCbFFpbSojuGQajdRGIVOq0pzLsutawKpIZtvLFmRfsWJGznd_TfAxBuzrTbDrJnzVDOqfSeq_SRJ7tmMbE-uV3waXmv3DfQMLS2C7</recordid><startdate>20141223</startdate><enddate>20141223</enddate><creator>Chang, William B</creator><creator>Mai, Cheng-Kang</creator><creator>Kotiuga, Michele</creator><creator>Neaton, Jeffrey B</creator><creator>Bazan, Guillermo C</creator><creator>Segalman, Rachel A</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141223</creationdate><title>Controlling the Thermoelectric Properties of Thiophene-Derived Single-Molecule Junctions</title><author>Chang, William B ; Mai, Cheng-Kang ; Kotiuga, Michele ; Neaton, Jeffrey B ; Bazan, Guillermo C ; Segalman, Rachel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-c4173de84b927606be788c9c52618ec68c7e177982264ddb0e93a32bf6b06f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, William B</creatorcontrib><creatorcontrib>Mai, Cheng-Kang</creatorcontrib><creatorcontrib>Kotiuga, Michele</creatorcontrib><creatorcontrib>Neaton, Jeffrey B</creatorcontrib><creatorcontrib>Bazan, Guillermo C</creatorcontrib><creatorcontrib>Segalman, Rachel A</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, William B</au><au>Mai, Cheng-Kang</au><au>Kotiuga, Michele</au><au>Neaton, Jeffrey B</au><au>Bazan, Guillermo C</au><au>Segalman, Rachel A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the Thermoelectric Properties of Thiophene-Derived Single-Molecule Junctions</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2014-12-23</date><risdate>2014</risdate><volume>26</volume><issue>24</issue><spage>7229</spage><epage>7235</epage><pages>7229-7235</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Thermoelectrics are famously challenging to optimize, because of inverse coupling of the Seebeck coefficient and electrical conductivity, both of which control the thermoelectric power factor. Inorganic–organic interfaces provide a promising route for realization of the strong electrical and thermal asymmetries required for thermoelectrics. In this work, transport properties of inorganic–organic interfaces are probed and understood at the molecular scale using the STM-break junction measurement technique, theory, and a class of newly synthesized molecules. We synthesized a series of disubstituted thiophene derivatives varying the length of alkylthio-linkers and the number of thiophene rings. These molecules allow the systematic tuning of electronic resonances within the junction. We observed that these molecules have a decreasing Seebeck coefficient with increasing length of the alkyl chain, while oligothiophene junctions show an increasing Seebeck coefficient with length. We find that thiophene–Au junctions have significantly higher Seebeck coefficients, compared to benzenedithiol (in the range of 7–15 μV/K). A minimal tight-binding model, including a gateway state associated with the S–Au bond, captures and explains both trends. This work identifies S–Au gateway states as being important and potentially tunable features of junction electronic structure for enhancing the power factor of organic/inorganic interfaces.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm504254n</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2014-12, Vol.26 (24), p.7229-7235
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_cm504254n
source American Chemical Society Journals
title Controlling the Thermoelectric Properties of Thiophene-Derived Single-Molecule Junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20Thermoelectric%20Properties%20of%20Thiophene-Derived%20Single-Molecule%20Junctions&rft.jtitle=Chemistry%20of%20materials&rft.au=Chang,%20William%20B&rft.date=2014-12-23&rft.volume=26&rft.issue=24&rft.spage=7229&rft.epage=7235&rft.pages=7229-7235&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm504254n&rft_dat=%3Cacs_cross%3Ea564183372%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true