Designing High-Capacity, Lithium-Ion Cathodes Using X-ray Absorption Spectroscopy
We have taken advantage of the element specific nature of X-ray absorption spectroscopy to elucidate the chemical and structural details of a surface treatment intended for the protection of high-capacity cathode materials. Electrochemical data have shown that surface treatments of 0.5Li2MnO3•0.5LiC...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2011-12, Vol.23 (24), p.5415-5424 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5424 |
---|---|
container_issue | 24 |
container_start_page | 5415 |
container_title | Chemistry of materials |
container_volume | 23 |
creator | Croy, Jason R Balasubramanian, Mahalingam Kim, Donghan Kang, Sun-Ho Thackeray, Michael M |
description | We have taken advantage of the element specific nature of X-ray absorption spectroscopy to elucidate the chemical and structural details of a surface treatment intended for the protection of high-capacity cathode materials. Electrochemical data have shown that surface treatments of 0.5Li2MnO3•0.5LiCoO2 (Li1.2Mn0.4Co0.4O2) with an acidic solution of lithium–nickel-phosphate significantly improves electrode capacity, rate, and cycling stability. XAS data reveal that the surface treatment results in a modification of the composite structure itself, where Ni2+ cations, intended to be present in a lithium–nickel-phosphate coating, have instead displaced lithium in the transition metal layers of Li2MnO3-like domains within the 0.5Li2MnO3•0.5LiCoO2 structure. X-ray diffraction data show the presence of Li3PO4, suggesting that phosphate ions from the acidic solution are responsible for lithium extraction and nickel insertion with the formation of vacancies and/or manganese reduction for charge compensation. Furthermore, we show that the above effects are not limited to lithium–nickel-phosphate treatments. The studies described are consistent with a novel approach for synthesizing and tailoring the structures of high-capacity cathode materials whereby a Li2MnO3 framework is used as a precursor for synthesizing a wide variety of composite metal oxide insertion electrodes for Li-ion battery applications. |
doi_str_mv | 10.1021/cm2026703 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cm2026703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a51458577</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-d9be7b58b858352952dcc968c09cbf9297aed8e9ebcd364b3032ac04df1964833</originalsourceid><addsrcrecordid>eNpt0EFLwzAUB_AgCtbpwW_QiwfB6EvStMlx1OkGBREdeCtJmrYZri1Jd-i3t2PiydM7vB__9_gjdEvgkQAlT2ZPgaYZsDMUEU4BcwB6jiIQMsNJxtNLdBXCDoDMXETo_dkG13Sua-K1a1qcq0EZN04PceHG1h32eNN3ca7Gtq9siLfhKL-wV1O81KH3w-jm_cdgzej7YPphukYXtfoO9uZ3LtD2ZfWZr3Hx9rrJlwVWjPIRV1LbTHOhBReMU8lpZYxMhQFpdC2pzJSthJVWm4qliWbAqDKQVDWRaSIYW6D7U66ZDwdv63Lwbq_8VBIoj12Uf13M9u5klQnlrj_4bv7sH_cD9U1dGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Designing High-Capacity, Lithium-Ion Cathodes Using X-ray Absorption Spectroscopy</title><source>American Chemical Society Publications</source><creator>Croy, Jason R ; Balasubramanian, Mahalingam ; Kim, Donghan ; Kang, Sun-Ho ; Thackeray, Michael M</creator><creatorcontrib>Croy, Jason R ; Balasubramanian, Mahalingam ; Kim, Donghan ; Kang, Sun-Ho ; Thackeray, Michael M</creatorcontrib><description>We have taken advantage of the element specific nature of X-ray absorption spectroscopy to elucidate the chemical and structural details of a surface treatment intended for the protection of high-capacity cathode materials. Electrochemical data have shown that surface treatments of 0.5Li2MnO3•0.5LiCoO2 (Li1.2Mn0.4Co0.4O2) with an acidic solution of lithium–nickel-phosphate significantly improves electrode capacity, rate, and cycling stability. XAS data reveal that the surface treatment results in a modification of the composite structure itself, where Ni2+ cations, intended to be present in a lithium–nickel-phosphate coating, have instead displaced lithium in the transition metal layers of Li2MnO3-like domains within the 0.5Li2MnO3•0.5LiCoO2 structure. X-ray diffraction data show the presence of Li3PO4, suggesting that phosphate ions from the acidic solution are responsible for lithium extraction and nickel insertion with the formation of vacancies and/or manganese reduction for charge compensation. Furthermore, we show that the above effects are not limited to lithium–nickel-phosphate treatments. The studies described are consistent with a novel approach for synthesizing and tailoring the structures of high-capacity cathode materials whereby a Li2MnO3 framework is used as a precursor for synthesizing a wide variety of composite metal oxide insertion electrodes for Li-ion battery applications.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm2026703</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2011-12, Vol.23 (24), p.5415-5424</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-d9be7b58b858352952dcc968c09cbf9297aed8e9ebcd364b3032ac04df1964833</citedby><cites>FETCH-LOGICAL-a325t-d9be7b58b858352952dcc968c09cbf9297aed8e9ebcd364b3032ac04df1964833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm2026703$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm2026703$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Croy, Jason R</creatorcontrib><creatorcontrib>Balasubramanian, Mahalingam</creatorcontrib><creatorcontrib>Kim, Donghan</creatorcontrib><creatorcontrib>Kang, Sun-Ho</creatorcontrib><creatorcontrib>Thackeray, Michael M</creatorcontrib><title>Designing High-Capacity, Lithium-Ion Cathodes Using X-ray Absorption Spectroscopy</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>We have taken advantage of the element specific nature of X-ray absorption spectroscopy to elucidate the chemical and structural details of a surface treatment intended for the protection of high-capacity cathode materials. Electrochemical data have shown that surface treatments of 0.5Li2MnO3•0.5LiCoO2 (Li1.2Mn0.4Co0.4O2) with an acidic solution of lithium–nickel-phosphate significantly improves electrode capacity, rate, and cycling stability. XAS data reveal that the surface treatment results in a modification of the composite structure itself, where Ni2+ cations, intended to be present in a lithium–nickel-phosphate coating, have instead displaced lithium in the transition metal layers of Li2MnO3-like domains within the 0.5Li2MnO3•0.5LiCoO2 structure. X-ray diffraction data show the presence of Li3PO4, suggesting that phosphate ions from the acidic solution are responsible for lithium extraction and nickel insertion with the formation of vacancies and/or manganese reduction for charge compensation. Furthermore, we show that the above effects are not limited to lithium–nickel-phosphate treatments. The studies described are consistent with a novel approach for synthesizing and tailoring the structures of high-capacity cathode materials whereby a Li2MnO3 framework is used as a precursor for synthesizing a wide variety of composite metal oxide insertion electrodes for Li-ion battery applications.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpt0EFLwzAUB_AgCtbpwW_QiwfB6EvStMlx1OkGBREdeCtJmrYZri1Jd-i3t2PiydM7vB__9_gjdEvgkQAlT2ZPgaYZsDMUEU4BcwB6jiIQMsNJxtNLdBXCDoDMXETo_dkG13Sua-K1a1qcq0EZN04PceHG1h32eNN3ca7Gtq9siLfhKL-wV1O81KH3w-jm_cdgzej7YPphukYXtfoO9uZ3LtD2ZfWZr3Hx9rrJlwVWjPIRV1LbTHOhBReMU8lpZYxMhQFpdC2pzJSthJVWm4qliWbAqDKQVDWRaSIYW6D7U66ZDwdv63Lwbq_8VBIoj12Uf13M9u5klQnlrj_4bv7sH_cD9U1dGw</recordid><startdate>20111227</startdate><enddate>20111227</enddate><creator>Croy, Jason R</creator><creator>Balasubramanian, Mahalingam</creator><creator>Kim, Donghan</creator><creator>Kang, Sun-Ho</creator><creator>Thackeray, Michael M</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111227</creationdate><title>Designing High-Capacity, Lithium-Ion Cathodes Using X-ray Absorption Spectroscopy</title><author>Croy, Jason R ; Balasubramanian, Mahalingam ; Kim, Donghan ; Kang, Sun-Ho ; Thackeray, Michael M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-d9be7b58b858352952dcc968c09cbf9297aed8e9ebcd364b3032ac04df1964833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Croy, Jason R</creatorcontrib><creatorcontrib>Balasubramanian, Mahalingam</creatorcontrib><creatorcontrib>Kim, Donghan</creatorcontrib><creatorcontrib>Kang, Sun-Ho</creatorcontrib><creatorcontrib>Thackeray, Michael M</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Croy, Jason R</au><au>Balasubramanian, Mahalingam</au><au>Kim, Donghan</au><au>Kang, Sun-Ho</au><au>Thackeray, Michael M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing High-Capacity, Lithium-Ion Cathodes Using X-ray Absorption Spectroscopy</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2011-12-27</date><risdate>2011</risdate><volume>23</volume><issue>24</issue><spage>5415</spage><epage>5424</epage><pages>5415-5424</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>We have taken advantage of the element specific nature of X-ray absorption spectroscopy to elucidate the chemical and structural details of a surface treatment intended for the protection of high-capacity cathode materials. Electrochemical data have shown that surface treatments of 0.5Li2MnO3•0.5LiCoO2 (Li1.2Mn0.4Co0.4O2) with an acidic solution of lithium–nickel-phosphate significantly improves electrode capacity, rate, and cycling stability. XAS data reveal that the surface treatment results in a modification of the composite structure itself, where Ni2+ cations, intended to be present in a lithium–nickel-phosphate coating, have instead displaced lithium in the transition metal layers of Li2MnO3-like domains within the 0.5Li2MnO3•0.5LiCoO2 structure. X-ray diffraction data show the presence of Li3PO4, suggesting that phosphate ions from the acidic solution are responsible for lithium extraction and nickel insertion with the formation of vacancies and/or manganese reduction for charge compensation. Furthermore, we show that the above effects are not limited to lithium–nickel-phosphate treatments. The studies described are consistent with a novel approach for synthesizing and tailoring the structures of high-capacity cathode materials whereby a Li2MnO3 framework is used as a precursor for synthesizing a wide variety of composite metal oxide insertion electrodes for Li-ion battery applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm2026703</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2011-12, Vol.23 (24), p.5415-5424 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_crossref_primary_10_1021_cm2026703 |
source | American Chemical Society Publications |
title | Designing High-Capacity, Lithium-Ion Cathodes Using X-ray Absorption Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20High-Capacity,%20Lithium-Ion%20Cathodes%20Using%20X-ray%20Absorption%20Spectroscopy&rft.jtitle=Chemistry%20of%20materials&rft.au=Croy,%20Jason%20R&rft.date=2011-12-27&rft.volume=23&rft.issue=24&rft.spage=5415&rft.epage=5424&rft.pages=5415-5424&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm2026703&rft_dat=%3Cacs_cross%3Ea51458577%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |