Ferromagnetic Order from p-Electrons in Rubidium Oxide

Magnetic dioxygen molecules can be used as building blocks of model systems to investigate spin-polarization that arises from unpaired p-electrons, the scientific potential of which is evidenced by phenomena such as spin-polarized transport in graphene. In solid elemental oxygen and all of the known...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2011-03, Vol.23 (6), p.1578-1586
Hauptverfasser: Riyadi, Syarif, Giriyapura, Shivakumara, de Groot, Robert A, Caretta, Antonio, van Loosdrecht, Paul H. M, Palstra, Thomas T. M, Blake, Graeme R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1586
container_issue 6
container_start_page 1578
container_title Chemistry of materials
container_volume 23
creator Riyadi, Syarif
Giriyapura, Shivakumara
de Groot, Robert A
Caretta, Antonio
van Loosdrecht, Paul H. M
Palstra, Thomas T. M
Blake, Graeme R
description Magnetic dioxygen molecules can be used as building blocks of model systems to investigate spin-polarization that arises from unpaired p-electrons, the scientific potential of which is evidenced by phenomena such as spin-polarized transport in graphene. In solid elemental oxygen and all of the known ionic salts comprised of magnetic dioxygen anions and alkali metal cations, the dominant magnetic interactions are antiferromagnetic. We have induced novel ferromagnetic interactions by introducing oxygen deficiency in rubidium superoxide (RbO2). The anion vacancies in the resulting phase with composition RbO1.72 provide greater structural flexibility compared to RbO2 and facilitate a Jahn−Teller-driven order−disorder transition involving the anion orientations at ∼230 K, below which their axes become confined to a plane. This reorganization gives rise to short-range ferromagnetic ordering below ∼50 K. A ferromagnetic cluster-glass state then forms below ∼20 K, embedded in an antiferromagnetic matrix that orders at ∼5 K. We attribute this inhomogeneous magnetic order to either subtly different anion geometries within different structural nanodomains or to the presence of clusters in which double exchange takes place between the anions, which are mixed-valence in nature. We thus demonstrate that nonstoichiometry can be employed as a new route to induce ferromagnetism in alkali metal oxides.
doi_str_mv 10.1021/cm103433r
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cm103433r</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a887054628</sourcerecordid><originalsourceid>FETCH-LOGICAL-a294t-7a0de28df5d887b6570c349507ae41e92d86098dfd7c0e21e4bb28190914dffd3</originalsourceid><addsrcrecordid>eNptj0FLxDAUhIMouK4e_Ae9ePAQfUmTJjnKsrsKCwXRc0mTF8mybZekBf33VlY8eRqY-RhmCLll8MCAs0fXMShFWaYzsmCSA5UA_JwsQBtFhZLVJbnKeQ_AZlwvSLXBlIbOfvQ4RlfUyWMqwuwUR7o-oBvT0Oci9sXr1EYfp66oP6PHa3IR7CHjza8uyftm_bZ6prt6-7J62lHLjRipsuCRax-k11q1lVTgSmEkKIuCoeFeV2Dm3CsHyBmKtuWaGTBM-BB8uST3p16XhpwThuaYYmfTV8Og-Tnc_B2e2bsTa11u9sOU-nnZP9w3Ma1Tsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ferromagnetic Order from p-Electrons in Rubidium Oxide</title><source>ACS Publications</source><creator>Riyadi, Syarif ; Giriyapura, Shivakumara ; de Groot, Robert A ; Caretta, Antonio ; van Loosdrecht, Paul H. M ; Palstra, Thomas T. M ; Blake, Graeme R</creator><creatorcontrib>Riyadi, Syarif ; Giriyapura, Shivakumara ; de Groot, Robert A ; Caretta, Antonio ; van Loosdrecht, Paul H. M ; Palstra, Thomas T. M ; Blake, Graeme R</creatorcontrib><description>Magnetic dioxygen molecules can be used as building blocks of model systems to investigate spin-polarization that arises from unpaired p-electrons, the scientific potential of which is evidenced by phenomena such as spin-polarized transport in graphene. In solid elemental oxygen and all of the known ionic salts comprised of magnetic dioxygen anions and alkali metal cations, the dominant magnetic interactions are antiferromagnetic. We have induced novel ferromagnetic interactions by introducing oxygen deficiency in rubidium superoxide (RbO2). The anion vacancies in the resulting phase with composition RbO1.72 provide greater structural flexibility compared to RbO2 and facilitate a Jahn−Teller-driven order−disorder transition involving the anion orientations at ∼230 K, below which their axes become confined to a plane. This reorganization gives rise to short-range ferromagnetic ordering below ∼50 K. A ferromagnetic cluster-glass state then forms below ∼20 K, embedded in an antiferromagnetic matrix that orders at ∼5 K. We attribute this inhomogeneous magnetic order to either subtly different anion geometries within different structural nanodomains or to the presence of clusters in which double exchange takes place between the anions, which are mixed-valence in nature. We thus demonstrate that nonstoichiometry can be employed as a new route to induce ferromagnetism in alkali metal oxides.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm103433r</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2011-03, Vol.23 (6), p.1578-1586</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a294t-7a0de28df5d887b6570c349507ae41e92d86098dfd7c0e21e4bb28190914dffd3</citedby><cites>FETCH-LOGICAL-a294t-7a0de28df5d887b6570c349507ae41e92d86098dfd7c0e21e4bb28190914dffd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm103433r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm103433r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Riyadi, Syarif</creatorcontrib><creatorcontrib>Giriyapura, Shivakumara</creatorcontrib><creatorcontrib>de Groot, Robert A</creatorcontrib><creatorcontrib>Caretta, Antonio</creatorcontrib><creatorcontrib>van Loosdrecht, Paul H. M</creatorcontrib><creatorcontrib>Palstra, Thomas T. M</creatorcontrib><creatorcontrib>Blake, Graeme R</creatorcontrib><title>Ferromagnetic Order from p-Electrons in Rubidium Oxide</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Magnetic dioxygen molecules can be used as building blocks of model systems to investigate spin-polarization that arises from unpaired p-electrons, the scientific potential of which is evidenced by phenomena such as spin-polarized transport in graphene. In solid elemental oxygen and all of the known ionic salts comprised of magnetic dioxygen anions and alkali metal cations, the dominant magnetic interactions are antiferromagnetic. We have induced novel ferromagnetic interactions by introducing oxygen deficiency in rubidium superoxide (RbO2). The anion vacancies in the resulting phase with composition RbO1.72 provide greater structural flexibility compared to RbO2 and facilitate a Jahn−Teller-driven order−disorder transition involving the anion orientations at ∼230 K, below which their axes become confined to a plane. This reorganization gives rise to short-range ferromagnetic ordering below ∼50 K. A ferromagnetic cluster-glass state then forms below ∼20 K, embedded in an antiferromagnetic matrix that orders at ∼5 K. We attribute this inhomogeneous magnetic order to either subtly different anion geometries within different structural nanodomains or to the presence of clusters in which double exchange takes place between the anions, which are mixed-valence in nature. We thus demonstrate that nonstoichiometry can be employed as a new route to induce ferromagnetism in alkali metal oxides.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptj0FLxDAUhIMouK4e_Ae9ePAQfUmTJjnKsrsKCwXRc0mTF8mybZekBf33VlY8eRqY-RhmCLll8MCAs0fXMShFWaYzsmCSA5UA_JwsQBtFhZLVJbnKeQ_AZlwvSLXBlIbOfvQ4RlfUyWMqwuwUR7o-oBvT0Oci9sXr1EYfp66oP6PHa3IR7CHjza8uyftm_bZ6prt6-7J62lHLjRipsuCRax-k11q1lVTgSmEkKIuCoeFeV2Dm3CsHyBmKtuWaGTBM-BB8uST3p16XhpwThuaYYmfTV8Og-Tnc_B2e2bsTa11u9sOU-nnZP9w3Ma1Tsg</recordid><startdate>20110322</startdate><enddate>20110322</enddate><creator>Riyadi, Syarif</creator><creator>Giriyapura, Shivakumara</creator><creator>de Groot, Robert A</creator><creator>Caretta, Antonio</creator><creator>van Loosdrecht, Paul H. M</creator><creator>Palstra, Thomas T. M</creator><creator>Blake, Graeme R</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110322</creationdate><title>Ferromagnetic Order from p-Electrons in Rubidium Oxide</title><author>Riyadi, Syarif ; Giriyapura, Shivakumara ; de Groot, Robert A ; Caretta, Antonio ; van Loosdrecht, Paul H. M ; Palstra, Thomas T. M ; Blake, Graeme R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a294t-7a0de28df5d887b6570c349507ae41e92d86098dfd7c0e21e4bb28190914dffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riyadi, Syarif</creatorcontrib><creatorcontrib>Giriyapura, Shivakumara</creatorcontrib><creatorcontrib>de Groot, Robert A</creatorcontrib><creatorcontrib>Caretta, Antonio</creatorcontrib><creatorcontrib>van Loosdrecht, Paul H. M</creatorcontrib><creatorcontrib>Palstra, Thomas T. M</creatorcontrib><creatorcontrib>Blake, Graeme R</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riyadi, Syarif</au><au>Giriyapura, Shivakumara</au><au>de Groot, Robert A</au><au>Caretta, Antonio</au><au>van Loosdrecht, Paul H. M</au><au>Palstra, Thomas T. M</au><au>Blake, Graeme R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferromagnetic Order from p-Electrons in Rubidium Oxide</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2011-03-22</date><risdate>2011</risdate><volume>23</volume><issue>6</issue><spage>1578</spage><epage>1586</epage><pages>1578-1586</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Magnetic dioxygen molecules can be used as building blocks of model systems to investigate spin-polarization that arises from unpaired p-electrons, the scientific potential of which is evidenced by phenomena such as spin-polarized transport in graphene. In solid elemental oxygen and all of the known ionic salts comprised of magnetic dioxygen anions and alkali metal cations, the dominant magnetic interactions are antiferromagnetic. We have induced novel ferromagnetic interactions by introducing oxygen deficiency in rubidium superoxide (RbO2). The anion vacancies in the resulting phase with composition RbO1.72 provide greater structural flexibility compared to RbO2 and facilitate a Jahn−Teller-driven order−disorder transition involving the anion orientations at ∼230 K, below which their axes become confined to a plane. This reorganization gives rise to short-range ferromagnetic ordering below ∼50 K. A ferromagnetic cluster-glass state then forms below ∼20 K, embedded in an antiferromagnetic matrix that orders at ∼5 K. We attribute this inhomogeneous magnetic order to either subtly different anion geometries within different structural nanodomains or to the presence of clusters in which double exchange takes place between the anions, which are mixed-valence in nature. We thus demonstrate that nonstoichiometry can be employed as a new route to induce ferromagnetism in alkali metal oxides.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm103433r</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2011-03, Vol.23 (6), p.1578-1586
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_cm103433r
source ACS Publications
title Ferromagnetic Order from p-Electrons in Rubidium Oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferromagnetic%20Order%20from%20p-Electrons%20in%20Rubidium%20Oxide&rft.jtitle=Chemistry%20of%20materials&rft.au=Riyadi,%20Syarif&rft.date=2011-03-22&rft.volume=23&rft.issue=6&rft.spage=1578&rft.epage=1586&rft.pages=1578-1586&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm103433r&rft_dat=%3Cacs_cross%3Ea887054628%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true