Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays

Hybrid supercapacitor electrodes with remarkable specific capacitance have been fabricated by coaxially coating manganese oxide thin films on a vertically aligned carbon nanofiber array. Ultrathin manganese oxide layers are uniformly coated around each carbon nanofiber via cathodic electrochemical d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2010-09, Vol.22 (17), p.5022-5030
Hauptverfasser: Liu, Jianwei, Essner, Jeremy, Li, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5030
container_issue 17
container_start_page 5022
container_title Chemistry of materials
container_volume 22
creator Liu, Jianwei
Essner, Jeremy
Li, Jun
description Hybrid supercapacitor electrodes with remarkable specific capacitance have been fabricated by coaxially coating manganese oxide thin films on a vertically aligned carbon nanofiber array. Ultrathin manganese oxide layers are uniformly coated around each carbon nanofiber via cathodic electrochemical deposition, likely based on water electrolysis initiated electrochemical oxidation. This results in a unique core-shell nanostructure which uses the three-dimensional brush-like vertical carbon nanofiber array as the highly conductive and robust core to support a large effective surface area and provide reliable electrical connection to a thin redox active manganese oxide shell. The pseudo-capacitance of 313 F/g in addition to the electrical double layer capacitance of 36 F/g is achieved by cyclic voltammetry at a scan rate of 50 mV/s and maintains at this level as the scan rate is increased up to 2000 mV/s. A maximum specific capacitance of 365 F/g has been achieved with chronopotentiometry in 0.10 M Na2SO4 aqueous solution with ∼7.5 nm thick manganese oxide. This hybrid core-shell nanostructure demonstrates high performance in maximum specific energy (32.5 Wh/kg), specific power (6.216 kW/kg), and cycle stability (∼11% drop after 500 cycles), which are derived from cyclic voltammetry and galvanostatic charge−discharge measurements. This new architecture can be potentially developed as multifunctional electrical energy storage devices.
doi_str_mv 10.1021/cm101591p
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cm101591p</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b767852768</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-54e0f09ce0c77e6e5d6c0381e3c319f443bfa4a4fc584ceca356a823602ff90a3</originalsourceid><addsrcrecordid>eNpt0E1PwzAMBuAIgcQYHPgHvXDgUHCapB_HUQFDGuzAx7VyU2fK1LVV0knrv6dliBMnW_Yjy3oZu-ZwxyHi93rHgauMdydsxlUEoQKITtkM0iwJZaLic3bh_RaAjzydsd1yKJ2tgvd9R05jh9r2rQse0FMVtE2Qt3iwWNfD1PXj7BWbDTbkKVgfbEWT-SLXW_2DFrXdNKPK0ZXj5g2b1tiSXLBwDgd_yc4M1p6ufuucfT49fuTLcLV-fskXqxBFpPpQSQIDmSbQSUIxqSrWIFJOQgueGSlFaVCiNFqlUpNGoWJMIxFDZEwGKObs9nhXu9Z7R6bonN2hGwoOxZRT8ZfTaG-OFrUvtu3eNeNn_7hv_sxoJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays</title><source>ACS Publications</source><creator>Liu, Jianwei ; Essner, Jeremy ; Li, Jun</creator><creatorcontrib>Liu, Jianwei ; Essner, Jeremy ; Li, Jun</creatorcontrib><description>Hybrid supercapacitor electrodes with remarkable specific capacitance have been fabricated by coaxially coating manganese oxide thin films on a vertically aligned carbon nanofiber array. Ultrathin manganese oxide layers are uniformly coated around each carbon nanofiber via cathodic electrochemical deposition, likely based on water electrolysis initiated electrochemical oxidation. This results in a unique core-shell nanostructure which uses the three-dimensional brush-like vertical carbon nanofiber array as the highly conductive and robust core to support a large effective surface area and provide reliable electrical connection to a thin redox active manganese oxide shell. The pseudo-capacitance of 313 F/g in addition to the electrical double layer capacitance of 36 F/g is achieved by cyclic voltammetry at a scan rate of 50 mV/s and maintains at this level as the scan rate is increased up to 2000 mV/s. A maximum specific capacitance of 365 F/g has been achieved with chronopotentiometry in 0.10 M Na2SO4 aqueous solution with ∼7.5 nm thick manganese oxide. This hybrid core-shell nanostructure demonstrates high performance in maximum specific energy (32.5 Wh/kg), specific power (6.216 kW/kg), and cycle stability (∼11% drop after 500 cycles), which are derived from cyclic voltammetry and galvanostatic charge−discharge measurements. This new architecture can be potentially developed as multifunctional electrical energy storage devices.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm101591p</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Carbon Materials ; Electrochemistry ; Nanomaterials (Nanops, Nanotubes, etc.)</subject><ispartof>Chemistry of materials, 2010-09, Vol.22 (17), p.5022-5030</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-54e0f09ce0c77e6e5d6c0381e3c319f443bfa4a4fc584ceca356a823602ff90a3</citedby><cites>FETCH-LOGICAL-a325t-54e0f09ce0c77e6e5d6c0381e3c319f443bfa4a4fc584ceca356a823602ff90a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm101591p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm101591p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>Liu, Jianwei</creatorcontrib><creatorcontrib>Essner, Jeremy</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><title>Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Hybrid supercapacitor electrodes with remarkable specific capacitance have been fabricated by coaxially coating manganese oxide thin films on a vertically aligned carbon nanofiber array. Ultrathin manganese oxide layers are uniformly coated around each carbon nanofiber via cathodic electrochemical deposition, likely based on water electrolysis initiated electrochemical oxidation. This results in a unique core-shell nanostructure which uses the three-dimensional brush-like vertical carbon nanofiber array as the highly conductive and robust core to support a large effective surface area and provide reliable electrical connection to a thin redox active manganese oxide shell. The pseudo-capacitance of 313 F/g in addition to the electrical double layer capacitance of 36 F/g is achieved by cyclic voltammetry at a scan rate of 50 mV/s and maintains at this level as the scan rate is increased up to 2000 mV/s. A maximum specific capacitance of 365 F/g has been achieved with chronopotentiometry in 0.10 M Na2SO4 aqueous solution with ∼7.5 nm thick manganese oxide. This hybrid core-shell nanostructure demonstrates high performance in maximum specific energy (32.5 Wh/kg), specific power (6.216 kW/kg), and cycle stability (∼11% drop after 500 cycles), which are derived from cyclic voltammetry and galvanostatic charge−discharge measurements. This new architecture can be potentially developed as multifunctional electrical energy storage devices.</description><subject>Carbon Materials</subject><subject>Electrochemistry</subject><subject>Nanomaterials (Nanops, Nanotubes, etc.)</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0E1PwzAMBuAIgcQYHPgHvXDgUHCapB_HUQFDGuzAx7VyU2fK1LVV0knrv6dliBMnW_Yjy3oZu-ZwxyHi93rHgauMdydsxlUEoQKITtkM0iwJZaLic3bh_RaAjzydsd1yKJ2tgvd9R05jh9r2rQse0FMVtE2Qt3iwWNfD1PXj7BWbDTbkKVgfbEWT-SLXW_2DFrXdNKPK0ZXj5g2b1tiSXLBwDgd_yc4M1p6ufuucfT49fuTLcLV-fskXqxBFpPpQSQIDmSbQSUIxqSrWIFJOQgueGSlFaVCiNFqlUpNGoWJMIxFDZEwGKObs9nhXu9Z7R6bonN2hGwoOxZRT8ZfTaG-OFrUvtu3eNeNn_7hv_sxoJg</recordid><startdate>20100914</startdate><enddate>20100914</enddate><creator>Liu, Jianwei</creator><creator>Essner, Jeremy</creator><creator>Li, Jun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100914</creationdate><title>Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays</title><author>Liu, Jianwei ; Essner, Jeremy ; Li, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-54e0f09ce0c77e6e5d6c0381e3c319f443bfa4a4fc584ceca356a823602ff90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Carbon Materials</topic><topic>Electrochemistry</topic><topic>Nanomaterials (Nanops, Nanotubes, etc.)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jianwei</creatorcontrib><creatorcontrib>Essner, Jeremy</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jianwei</au><au>Essner, Jeremy</au><au>Li, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2010-09-14</date><risdate>2010</risdate><volume>22</volume><issue>17</issue><spage>5022</spage><epage>5030</epage><pages>5022-5030</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Hybrid supercapacitor electrodes with remarkable specific capacitance have been fabricated by coaxially coating manganese oxide thin films on a vertically aligned carbon nanofiber array. Ultrathin manganese oxide layers are uniformly coated around each carbon nanofiber via cathodic electrochemical deposition, likely based on water electrolysis initiated electrochemical oxidation. This results in a unique core-shell nanostructure which uses the three-dimensional brush-like vertical carbon nanofiber array as the highly conductive and robust core to support a large effective surface area and provide reliable electrical connection to a thin redox active manganese oxide shell. The pseudo-capacitance of 313 F/g in addition to the electrical double layer capacitance of 36 F/g is achieved by cyclic voltammetry at a scan rate of 50 mV/s and maintains at this level as the scan rate is increased up to 2000 mV/s. A maximum specific capacitance of 365 F/g has been achieved with chronopotentiometry in 0.10 M Na2SO4 aqueous solution with ∼7.5 nm thick manganese oxide. This hybrid core-shell nanostructure demonstrates high performance in maximum specific energy (32.5 Wh/kg), specific power (6.216 kW/kg), and cycle stability (∼11% drop after 500 cycles), which are derived from cyclic voltammetry and galvanostatic charge−discharge measurements. This new architecture can be potentially developed as multifunctional electrical energy storage devices.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm101591p</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2010-09, Vol.22 (17), p.5022-5030
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_cm101591p
source ACS Publications
subjects Carbon Materials
Electrochemistry
Nanomaterials (Nanops, Nanotubes, etc.)
title Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Supercapacitor%20Based%20on%20Coaxially%20Coated%20Manganese%20Oxide%20on%20Vertically%20Aligned%20Carbon%20Nanofiber%20Arrays&rft.jtitle=Chemistry%20of%20materials&rft.au=Liu,%20Jianwei&rft.date=2010-09-14&rft.volume=22&rft.issue=17&rft.spage=5022&rft.epage=5030&rft.pages=5022-5030&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm101591p&rft_dat=%3Cacs_cross%3Eb767852768%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true